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Shaft Deflection—A Very, Very Long Example
Christopher D. Wilson1, Michael W. Renfro2

Abstract – Most textbooks in mechanics of materials and components of machine describe numerous methods for
determining shaft (beam) deflections. The examples are quite varied, but most are not interrelated with follow-up
examples in which the same problem is attacked using different methods. Further, most examples are worked out by
hand and do not emphasize numerical methods used in common practice. Here, the deflection of a stepped shaft in
bending was solved using the following methods: closed-form successive integration of the bending moment
equations, Castigliano’s second theorem, numerical successive integration using the trapezoid rule, finite element
method, and estimation by beam table superposition. Computational tools, such as MATLAB, Excel, and Maple
were used in the solution process. The advantages and disadvantages of the methods used are discussed as well as
observations from use of the example.
Keywords: beam deflection, Castigliano’s second theorem, double integration, finite element modeling, numerical
integration

INTRODUCTION

The basic idea of this paper is to present, or at least, outline the solution to a shaft deflection problem using several
different methods. Studying the same problem from multiple perspectives is one way to gain a better overall
understanding. Different problem solving strategies can lead to the same solution and allow a student to see how
useful one method is when compared to another. Two other benefits from using different methods to study the same
problem are confidence building and estimation-skill development. Certainly, if students have successfully arrived at
one solution to a problem, they are likely to be more confident when trying another method. Also, having worked
through the several different methods, students can begin to judge situations where one solution method might be
preferred over others. Sometimes, the other method or methods may be not as accurate or as useful, but they can
provide enough accuracy for estimating the solution. Students need to practice the art of estimation so that they can
validate their own solutions.

In this paper, we will consider only the statically determinate problem. However, the same methods could be applied
to a statically indeterminate problem. Also, bending is restricted to a single plane in this paper.

There are many different solution methods for beam/shaft deflections. Integration schemes—both direct successive
integration and graphical integration—are the primary methods taught in mechanics of materials. Energy methods
are very powerful, but often have less emphasis in the first mechanics of materials course. The general advice we
give in machine design practice is to superimpose solutions from beam tables if the beam or shaft has a constant
cross section. When a stepped shaft is to be studied, direct successive integration becomes tedious. For a stepped
shaft, we recommend an energy method, such as Castigliano’s second theorem, if the deflection or slope is required
at only a few locations. Otherwise, we recommend numerical methods, such as successive numerical integration or
finite elements. However, we always recommend using beam table superposition for bounding estimates.

There are many mechanics of materials texts available to students. Timoshenko [1] and Popov [2] are the classics in
the field. Beer [3], Higdon [4] and Riley [5] are long established. Philpot [6], Vable [7] and Allen [8] are newer
treatments. These texts provide many excellent examples of both statically determinate and indeterminate beam
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problems. A variety of methods are used. For example, Hibbeler’s [9] chapter “Deflections of Beams and Shafts”
includes successive integration of the load intensity and successive integration of the bending moment, singularity
(Macaulay) functions, the moment-area method, and the principle of superposition. In a later chapter, “Energy
Methods,” virtual work and Castigliano’s second theorem are used to determine deflections.

As with mechanics of materials, there are many component machine design texts. All these texts assume that
students have already taken a course in mechanics of materials. Shigley[10], Phelan [11] and Spotts [12] are notable
classics, while Johnson [13] provided a new approach. Newer entries include Norton [14], Ugural [15] and Collins
[16]. All these texts assume that students have taken mechanics of materials. This assumption is also true of most
machine design courses.

There are many different tools for solving such problems. Powerful graphing calculators often have symbolic and
numerical capabilities for solving differential equations and for integration. Computer software includes specialty
educational programs for mechanics of materials, small locally-written finite element codes, commercial finite
element codes, computer algebra systems and related mathematical analysis programs and spreadsheets. With all
these computer tools available, many faculty and students will still choose to write their code.

THE PROBLEM STATEMENT

The chosen problem is a stepped shaft with simply supported (statically determinate) boundary conditions and two
concentrated forces. This problem was taken from Juvinall and Marshek [17]. The step changes in diameter provide
an opportunity to demonstrate how changes in area moment of inertia affect the solution. They also provide an
opportunity to demonstrate how solutions for beams with constant cross sections can be used for estimation.

Figure 1: Stepped Shaft (all dimensions in mm) [17]

In Figure 1, the boundary conditions (double triangle symbols) are given by radial bearings. These bearings can be
treated as pins or rollers depending on whether or not axial (thrust) forces are present. In this paper, we assume that
that there are no axial forces so that the equilibrium equation in the x direction is identically satisfied. In Figure 2(a),
a free-body diagram of the shaft is given that is consistent with this assumption. The other two equilibrium equations
are ∑

Fy = R1 − F1 + F2 +R2 = 0 (1)∑
Mz = −F1a+ F2b+R2L = 0 (2)

with y taken as shown in Figure 2(a) and z taken out of the paper toward the reader. Further, the moment is taken at
the left end in a counterclockwise direction. The solution for the reactions in terms of applied forces is

R1 =
L− a
L

F1 −
L− b
L

F2=
7

9
F1 −

1

3
F2 = 2444 N (3)

R2 =
a

L
F1 −

b

L
F2 =

2

9
F1 −

2

3
F2 = −444 N. (4)

In Figure 2(b), the free-body diagram for the section 0 < x < a is given. The moments must be developed for each
cross section. Figure 2(c) and Figure 2(d) show the free-body diagram for the sections given by a < x < b and
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Figure 2: Free-Body Diagrams

b < x < L, respectively. As an alternative to using Figure 2(d), a free-body diagram is drawn in Figure 2(e) with the
x origin given at the right end of the shaft (x′). The equations for equilibrium can be written for each free-body
diagram to determine shear force V (x) and moment M(x) on each section. For brevity, only the results for M(x) are
given here as

M1(x) = R1x (5)
M2(x) = R1x− F1(x− a) (6)
M3(x) = R1x− F1(x− a) + F2(x− b), (7)

where each Mi(x) equation is valid only for the range given in the accompanying free-body diagrams. If the
coordinate system is taken from the right end, it may be convenient to use M3 based on this alternate system:
M3(x

′) = R2x
′.

Other information of interest in the solutions are to note that Young’s modulus, E, is taken as 207,000MPa and the
area moment of inertia for a solid, round cross section is given by I = πd4/64. Here, I1 is based on d1 = 30 mm, I2
is based on d2 = 50 mm and I3 is based on d3 = 40 mm.
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THE SOLUTIONS

Superposition from Beam Table (By Hand Estimate)

As stated, the problem cannot be directly solved using superposition of beam table solutions because the cross
section is stepped. However, the beam tables can be used to quickly determine an estimate for the solution—by hand
calculation. The solution for a simply-supported beam with a single point force is given in all mechanics of materials
and machine design texts.

We must choose a constant diameter (or alternatively, choose a constant moment of inertia) in making the
calculations. Clearly, the 30 mm diameter is not representative of the entire shaft and we expect using it will lead to
much larger deflections than the actual stepped shaft. The opposite thought comes to mind for the 50 mm diameter
shaft; we expect that using 50 mm will lead to much smaller deflections than the actual stepped shaft. Perhaps, the 40
mm diameter is a good choice. For it, we expect a deflection that is smaller than the actual deflection for the leftmost
part of the shaft. We also expect that the estimated deflection for the rightmost part of the shaft will be close to the
actual deflection. Frankly, it is simple enough to try all three diameters and students should be encouraged to do so.

Successive Integration (Exact)

The successive integration of the moment equations requires three intervals. For each interval, there will be two
constants of integration. Thus, there are six constants of integration to be found. For the simply-supported shaft, the
boundary conditions v(0) = 0 and v(L) = 0 will provide two equations. Four additional equations are needed. They
come from compatibility conditions at the intersections of the three intervals. At the left intersection, x = a, we must
have v(a)left = v(a)right and v′(a)left = v′(a)right. At the rightmost intersection, x = b, we must have
v(b)left = v(b)right and v′(b)left = v′(b)right.

From Figure 2, the moments can be integrated to yield slope and deflection equations. The integration results are
summarized here. For 0 < x < a,

M1(x) = R1x (8)∫
M1(x)dx = EI1

dv1
dx

= R1
x2

2
+ C1 (9)∫∫

M1(x)dx = EI1v1(x) = R1
x3

6
+ C1x+ C2. (10)

For a < x < b,

M2(x) = R1x− F1(x− a) (11)∫
M2(x)dx = EI2

dv1
dx

= R1
x2

2
− F1

(x− a)2

2
+ C3 (12)∫∫

M2(x)dx = EI2v2(x) = R1
x3

6
− F1

(x− a)3

6
+ C3x+ C4. (13)

For b < x < L,

M3(x) = R1x− F1(x− a) + F2(x− b) (14)∫
M3(x)dx = EI3

dv1
dx

= R1
x2

2
− F1

(x− a)2

2
+ F2

(x− b)2

2
+ C5 (15)∫∫

M3(x)dx = EI3v3(x) = R1
x3

6
− F1

(x− a)3

6
+ F2

(x− b)3

6
+ C5x+ C6. (16)

Here, the flexural rigidity EI and odd-subscripted constants C1, C3 and C5 have the dimensions of F × L2 and the
units of N×mm2. Then even-subscripted constants C2, C4 and C6 have the dimensions of F × L3 and units of
N×mm3.

Substituting x = 0 clearly yields EI1v1(0) = C2. But, v1(0) = 0, so C2 = 0. The other five conditions can be

© American Society for Engineering Education, 2013



2013 ASEE Southeast Section Conference

written in matrix form as

0 0 0 L 1

a − a
α2

− 1
α2

0 0

1 − 1
α2

0 0 0

0 b
α2

1
α2

− b
α3

− 1
α3

0 1
α2

0 − 1
α3

0





C1

C3

C4

C5

C6



=



−R1
L3

6 + F1
(L−a)3

6 − F2
(L−b)3

6(
1
α2
− 1
)
R1

a3

6(
1
α2
− 1
)
R1

a2

2(
1
α3
− 1

α2

) [
R1

b3

6 − F1
(b−a)3

6

]
(

1
α3
− 1

α2

) [
R1

b2

2 − F1
(b−a)2

2

]



. (17)

where α2 = I2/I1 and α3 = I3/I1. Note that Young’s modulus E cancels out of the equations and does not appear
in the above matrix. A brief MATLAB script for the successive integration method is given in Listing 1.

Castigliano’s Second Theorem (Exact)

Castigliano’s Second Theorem is a commonly used energy method. However, it is limited to finding the deflection at
a single point. It requires a point force at the location of interest, but a fictitious point force can be used if the location
does not have a point force. From Equations 5 through 7, we substitute the reaction equations 3-4 to yield:

M1(x) =

(
7

9
F1 −

1

3
F2

)
x (18)

M2(x) =

(
7

9
F1 −

1

3
F2

)
x− F1(x− a) (19)

M3(x) =

(
7

9
F1 −

1

3
F2

)
x− F1(x− a) + F2(x− b). (20)

Castigliano’s Second Theorem requires partial derivatives of the moment equations with respect to the point force at
the location of interest. If we use the method to determine the deflection at both x = a (where F1 is located) and
x = b (where F2 is located), the following derivatives will be needed:

∂M

∂F1
=


7
9x 0 < x < a
7
9x− (x− a) a < x < b
7
9x− (x− a) b < x < L

(21)

∂M

∂F2
=


−x3 0 < x < a

−x3 a < x < b

−x3 + (x− b) b < x < L.

(22)

The resulting equations for the deflections are

v(a) =

∫ a

0

M1

EI1

∂M1

∂F1
dx+

∫ b

a

M2

EI2

∂M2

∂F1
dx+

∫ L

b

M3

EI3

∂M3

∂F1
dx (23)

and

v(b) =

∫ a

0

M1

EI1

∂M1

∂F2
dx+

∫ b

a

M2

EI2

∂M2

∂F2
dx+

∫ L

b

M3

EI3

∂M3

∂F2
dx. (24)

The equations are implemented in a Maple script given in Listing 2. It is very important to to note to students that
Castigliano’s Second Theorem gives v(b) as a negative value because the deflection is in the opposite direction of F2.
They must see that F1 is downward and is twice as large as the upward F2, so that the overall deflection at x = b is
still downward (negative).

The Maple script also includes the use of a fictitious force that can be varied in a < x < b to determine deflections in
that range. Thus, using a script makes the effort involved in Castigliano’s Second Theorem more valuable.
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Finite Element Method (Numerical Estimate)

The finite element method, described by Mueller [18] and many others, is a procedure that first decomposes a
physical system into a set of simpler elements. Each element is governed by a simple system of algebraic equations.
The elements are reassembled into an approximation of the original system, and the resulting system of equations is
solved with matrix algebra. In the case of a structure subjected to loads within the linear elastic region of the
material, each element is modeled as a linear elastic member with a governing equation of

{f}(e) = [k]
(e) {u}(e) , (25)

where {f}(e) is the element load column vector, [k](e) is the element stiffness matrix, and {u}(e) is the element
displacement column vector. For the specific case of a stepped shaft with in-plane loads, each element can be
represented similar to Figure 3, which shows element 1 connecting nodes 1 and 2.

f   , uy1

21 1
f   , uθ1

f   , uy2 f   , ux2

θ2f   , uθ2θ1

x1f   , ux1
y2

x2
y1

Figure 3: Schematic of beam element [18]

One method for constructing the element stiffness matrix is the direct method, which relates a unit displacement or
rotation at a given node to the force required, assuming displacements and rotations at the other nodes in the element
are fixed at zero. For example, from mechanics of materials, we know the deflection of a bar with an axial end load is
δ = PL/AE, and P = δAE/L. For a unit displacement of δ = 1, P = AE/L. Thus, the stiffness matrix element
relating a force at degree of freedom 1 to the corresponding deflection is AE/L. Using the same method on the other
degrees of freedom for the element, the element stiffness matrix is defined as

[k]
(e)

=



AE
L 0 0 −AEL 0 0

0 12EI
L3

6EI
L3 0 − 12EI

L3
6EI
L2

0 6EI
L3

4EI
L3 0 − 6EI

L2
2EI
L

−AEL 0 0 AE
L 0 0

0 − 12EI
L3 − 6EI

L3 0 12EI
L3 − 6EI

L2

0 6EI
L3

2EI
L3 0 − 6EI

L2
4EI
L


(26)

The element stiffness matrices are assembled into a global stiffness matrix by summing up the contributions of each
element stiffness matrix to each degree of freedom. For example, in a two-element model where element 1 contains
nodes 1 and 2, and element 2 contains nodes 2 and 3, the global stiffness matrix [K] would be

[K] =



k
(1)
11 k

(1)
12 k

(1)
13 k

(1)
14 k

(1)
15 k

(1)
16 0 0 0

k
(1)
21 k

(1)
22 k

(1)
23 k

(1)
24 k

(1)
25 k

(1)
26 0 0 0

k
(1)
31 k

(1)
32 k

(1)
33 k

(1)
34 k

(1)
35 k

(1)
36 0 0 0

k
(1)
41 k

(1)
42 k

(1)
43 k

(1)
44 + k

(2)
11 k

(1)
45 + k

(2)
12 k

(1)
46 + k

(2)
13 k

(2)
14 k

(2)
15 k

(2)
16

k
(1)
51 k

(1)
52 k

(1)
53 k

(1)
54 + k

(2)
21 k

(1)
55 + k

(2)
22 k

(1)
56 + k

(2)
23 k

(2)
24 k

(2)
25 k

(2)
26

k
(1)
61 k

(1)
62 k

(1)
63 k

(1)
64 + k

(2)
31 k

(1)
65 + k

(2)
32 k

(1)
66 + k

(2)
33 k

(2)
34 k

(2)
35 k

(2)
36

0 0 0 k
(2)
41 k

(2)
42 k

(2)
43 k

(2)
44 k

(2)
45 k

(2)
46

0 0 0 k
(2)
51 k

(2)
52 k

(2)
53 k

(2)
54 k

(2)
55 k

(2)
56

0 0 0 k
(2)
61 k

(2)
62 k

(2)
63 k

(2)
64 k

(2)
65 k

(2)
66


, (27)
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Figure 4: Influence of element length on shaft deflection

where k(m)
ij represents the ith row and jth column of the stiffness matrix for element m.

Once the global stiffness matrix is assembled, the global force and displacement vectors ({F} and {U}) are
constructed. Each vector is a list of known and unknown forces and displacements sorted by degree of freedom.
Since the first goal of the finite element method is to solve for the unknown displacements, all items in the stiffness,
force, and displacement matrices corresponding to known displacements must be eliminated. For example, if node
1’s y displacement (corresponding to degree of freedom 2) is fixed, then row 2 of the global force and displacement
vectors must be eliminated, along with row 2 and column 2 of the global stiffness matrix.

Now that the global matrices and vectors contain only unknown displacements, the system of equations can be solved
for {U}. Any method for solving a system of equations {F} = [K]{U} for {U} is acceptable, but Gaussian
elimination or LU decomposition are popular methods. A MATLAB script demonstrating this procedure, adapted
from [18], is given in Listing 3. The mesh provided in the script uses an element length of 50 mm for a total of nine
elements. This discretization is fine enough to provide an excellent match to the successive integration and
Castigliano’s solutions. The script should be reused with fewer elements (perhaps three elements of unequal length)
and with a larger number of elements (perhaps 18 elements of a uniform length of 25 mm) to demonstrate the
convergence process, as shown in Figure 4.

EXPERIENCE, RESULTS SUMMARY AND CONCLUSIONS

The first author’s experience with the example problem in a machine design course has been very successful.
Students appreciate having a second (or third or even fourth) chance to successfully solve a problem. The example
has been given to the class in three ways. First, the example has been used as an in-class case study spanning parts of
lectures over a three-week period of studying design for stiffness principles. The total time expended for the example
given here is approximately three hours (approximately one-third of the total time allocated for design for stiffness in
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Figure 5: Comparison of methods for calculating shaft deflection

the course syllabus). Second, the example (and other similar ones) has been used in successive homework
assignments and quizzes. With this approach, students worked through three homework assignments in a series,
having feedback (grades) before tackling the next assignment. The third way was a review problem set/example
given at the end of the term in preparation for the final exam—no class time was expended. The anecdotal responses
from students was good for all three approaches. However, no quantitative measurements of student improvement
have been made.

A complete comparison of results is given in Figure 5. Straight lines are used between calculated points in the figure
for simplicity. However, it should be pointed out, that for the finite element results, that the solution between adjacent
nodes is actually a cubic. The estimates based on the beam table superposition verify that the actual solution is
bounded between the 30 mm and the 50 mm diameter estimates. The 40 mm diameter estimate is quite accurate for
this problem. Students should be warned that estimates are not always this close to the exact solution.

The first author has also prepared a solution using numerical integration (trapezoid rule). This solution is
implemented in a spreadsheet (Excel) and closely follows the method laid out in the fifth edition of Shigley [10]. The
numerical integration method may be a good alternative to using the finite element method for those less familiar to
finite elements or to those concerned that the finite element method will be considered as a black-box to the students.

No emphasis was placed on the slope of the deflected shaft. The slope will be important in machine design
calculations involving bearings. Some additional effort can be spent on this detail if desired.

In conclusion, the stepped shaft problem is sufficiently complicated that the various solution methods presented here
are actually useful. Hopefully, the problem is not overly complicated. A similar effort for a statically indeterminate
beam or shaft would also be useful.
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SUCESSIVE INTEGRATION CODE

Listing 1: MATLAB Script for Successive Integration
% Successive integration method for stepped shaft

% Define the symbolic problem
syms x1 x2 x3 E L a b d1 d2 d3 F1 F2 c1 c2 c3 c4 c5 c6
R1 = (L-a)/L*F1-(L-b)/L*F2;
I1 = pi*d1^4/64;
I2 = pi*d2^4/64;
I3 = pi*d3^4/64;
alpha2 = I2/I1;
alpha3 = I3/I1;
coeff = [ ...

0 0 0 L 1;
a -a/alpha2 -1/alpha2 0 0;
1 -1/alpha2 0 0 0;
0 b/alpha2 1/alpha2 -b/alpha3 -1/alpha3;
0 1/alpha2 0 -1/alpha3 0 ...
];

rhs = [-R1*L^3/6+F1*(L-a)^3/6-F2*(L-b)^3/6;
(1/alpha2-1)*R1*a^3/6;
(1/alpha2-1)*R1*a^2/2;
(1/alpha3-1/alpha2)*(R1*b^3/6-F1*(b-a)^3/6);
(1/alpha3-1/alpha2)*(R1*b^2/2-F1*(b-a)^2/2)];

C = coeff\rhs; % elements of C1, C3, C4, C5, C6
C = [C(1); 0; C(2:5)]; % elements of C1 ... C6
v1 = (R1*(x1^3/6)+C(1)*x1+C(2))/(E*I1);
v2 = (R1*(x2^3/6)-F1*(x2-a)^3/6+C(3)*x2+C(4))/(E*I2);
v3 = (R1*(x3^3/6)-F1*(x3-a)^3/6+...

F2*(x3-b)^3/6+C(5)*x3+C(6))/(E*I3);

% Parameters for this particular stepped shaft
L = 450; a = 100; b = 300;
d1 = 30; d2 = 50; d3 = 40;
F1 = 4000; F2 = 2000; E = 207e3;
x1 = 0:25:a; x2 = a:25:b; x3 = b:25:L;
% Evaluated solution
v1evaluated = subs(v1);
v2evaluated = subs(v2);
v3evaluated = subs(v3);
plot(x1,v1evaluated,’-o’,x2,v2evaluated,’-s’,...

x3,v3evaluated,’-d’)
xlabel(’Position along shaft (mm)’);
ylabel(’Deflection (mm)’);
grid on;
table = [ x1 x2 x3; v1evaluated v2evaluated v3evaluated ]’
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CASTIGLIANO’S METHOD CODE

Listing 2: Maple Script for Castigliano’s Method
restart;
# Set up equilibrium equations
Fy:=R1+R2-F1-F2-P:
M0:=-F1*a-F2*b-P*c+R2*L:
# Solve for reactions
R2:=solve(M0=0,R2);
R1:=solve(Fy=0,R1);
# Define moment diagram
M1:=R1*x:
M2:=M1-F1*(x-a):
M3:=M2-P*(x-c):
M4:=M3-F2*(x-b):
# Take partials of moments with respect to P
dM1dP:=diff(M1,P):
dM2dP:=diff(M2,P):
dM3dP:=diff(M3,P):
dM4dP:=diff(M4,P):
# Define deflection at P in terms of partial of strain energy with
# respect to P
vP:=int(M1/(E*I1)*dM1dP,x=0..a)+int(M2/(E*I2)*dM2dP,x=a..c)+ \

int(M3/(E*I2)*dM3dP,x=c..b)+int(M4/(E*I3)*dM4dP,x=b..L):
# Define shaft geometry, material, and loading
d1:=30: d2:=50: d3:=40: a:=100: b:=300: L:=450:
I1:=evalf(Pi)*d1^4/64: I2:=evalf(Pi)*d2^4/64: I3:=evalf(Pi)*d3^4/64:
E:=207e3: F1:=4000: F2:=-2000: P:=0:
# Evaluate deflection for given shaft and loading
for c from a to b by 25 do

v:=evalf(vP);
printf("x=%f, v=%f\n", c, v);

end do:
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FINITE ELEMENT METHOD CODE

Listing 3: MATLAB Script for Finite Element Method
clear all;
close all;
% All units in terms of N and mm (including MPa)
% Shaft geometry
d1 = 30; d2 = 50; d3 = 40; % shaft diameters
L1 = 100; L2 = 200; L3 = 150; % shaft lengths
% Element geometry
Le = 50; % element length, must be divisor of L1, L2, L3
nElements = (L1+L2+L3)/Le; % number of elements
L = Le*ones(1,nElements); % vector of element lengths
d = [d1*ones(1,L1/Le) ...

d2*ones(1,L2/Le) ...
d3*ones(1,L3/Le)]; % vector of element diameters

A = pi*d.^2/4; % vector of element cross-sectional area
I = pi*d.^4./64; % vector of element moment of inertia
nNodes = nElements + 1; % number of nodes
nDof = 3*nNodes; % degrees of freedom
% Boundary conditions
F1 = -4e3; F2 = 2e3; % point loads
pinnode = 1; % node at left end of shaft
rollernode = nNodes; % node at right end of shaft
F1node = (L1/Le)+1; % node between first and second segments
F2node = ((L1+L2)/Le)+1; % node between second and third segments
% Material properties
E = 207e3*ones(1,nElements); % vector of element modulus of elasticity
% Step 1: Construct element stiffness matrix
k = zeros(6,6,nElements);
for n = 1:nElements

k11 = A(n)*E(n)/L(n); k22 = 12*E(n)*I(n)/L(n)^3;
k23 = 6*E(n)*I(n)/L(n)^2; k33 = 4*E(n)*I(n)/L(n);
k36 = 2*E(n)*I(n)/L(n);
k(:,:,n) = [ ...

k11 0 0 -k11 0 0;
0 k22 k23 0 -k22 k23;
0 k23 k33 0 -k23 k36;

-k11 0 0 k11 0 0;
0 -k22 -k23 0 k22 -k23;
0 k23 k36 0 -k23 k33];

end
% Step 2: Combine element stiffness matrices to form global stiffness
% matrix
shift = 0;
Ke = zeros(nDof,nDof,nElements);
for n = 1:nElements

for i = 1:6
for j = 1:6

Ke(i+shift,j+shift,n) = k(i,j,n);
end

end
shift = shift + 3;

end
K = sum(Ke,3);
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F = zeros(nDof,1);
F(3*(F1node-1)+2) = F1;
F(3*(F2node-1)+2) = F2;
% Step 3: Reduce global stiffness and force matrices with constraints --
% remove columns from right to left, and rows from bottom to top.
Kr = K; Fr = F;
Kr(:,3*(rollernode-1)+2) = []; Kr(3*(rollernode-1)+2,:) = [];
Kr(:,3*(pinnode-1)+2) = []; Kr(3*(pinnode-1)+2,:) = [];
Kr(:,3*(pinnode-1)+1) = []; Kr(3*(pinnode-1)+1,:) = [];
Fr(3*(rollernode-1)+2) = [];
Fr(3*(pinnode-1)+2) = [];
Fr(3*(pinnode-1)+1) = [];
% Step 4: Solve for unknown displacements
Ur = Kr\Fr;
% Step 5: Solve for forces -- first augment Ur with constrained
% displacements
U = [ Ur(1:3*(pinnode-1)); 0 ; 0; ...

Ur(3*(pinnode-1)+1:3*(rollernode-1)-1); ...
0; Ur(3*(rollernode-1):end) ];

F = K*U;
x = Le*(0:nNodes-1);
Uy = U(2:3:end);
plot(x,Uy,’b+-’); grid on; title(’Simply supported stepped shaft’);
xlabel(’Position along shaft (mm)’); ylabel(’Deflection (mm)’);
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