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Abstract – First-order approximations are important mathematical tools which find application across science and 

the engineering disciplines.  They are the heart of the common technique of linearizing nonlinear systems around an 

operating point.  Applications range from the simple pendulum to analog electronic circuits to control systems.  In 

addition, as is well-known, the mathematics skills of aspiring engineers are critical to future success, and, as a result, 

many first-year engineering programs place considerable emphasis on developing students’ mathematics skills, 

supplementing or even replacing traditional mathematics instruction.  This paper describes a first-semester 

engineering course module on first-order approximations.  The engineering course assumes only a high school 

precalculus background and does not employ calculus.  The course supplements but does not replace traditional 

mathematics instruction and is typically taken concurrently with the first calculus course.  While first-order 

approximations are related to Taylor series expansions, a topic typically covered in a second or third term calculus 

course, first-order approximations are themselves simple, algebraic formulas.  This module explores the first-order 

approximations of a number of functions which occur frequently in engineering, such as (1+x)
n
, e

x
, sin x, and tan x.  

They are explored computationally rather than theoretically.  They are applied to specific problems to compute 

approximate solutions.  Applications include estimating fuel mileage, square roots, and exponential growth and 

decay.  This exercises students’ precalculus math skills, builds their skills at applying mathematics, strengthens their 

understanding of nonlinear functions, provides tools for making “back of the envelope calculations,” and prepares 

them to see these concepts in greater depth later.  This module was first implemented in the 2010 fall term, so the 

paper’s results are still preliminary.  The desired outcomes are: 1) enhanced retention and 2) improved performance 

in subsequent technical courses, most immediately in foundational mathematics and physics courses.  Retention in 

the engineering major and course grades in Calculus I and Physics I will be used for assessment. 

Keywords:  Freshman programs, mathematics, first-order approximations. 

OVERVIEW 

Because the mathematics skills of aspiring engineers are critical to future success, many first-year engineering 

programs place considerable emphasis on developing students’ mathematics skills, supplementing or, as in the 

Wright State University Model, even radically restructuring traditional mathematics instruction [1]-[4].  This paper 

describes a module on first-order approximations which was developed as part of a one-semester, 2-credit hour 

“Intro to Engineering” course for first-semester freshman engineering majors. 

The course, EGR 101 “Introduction to Engineering Design and Analysis,” introduces students to the engineering 

profession, engineering design, problem-solving, and other concepts and skills important for their success in their 

college and professional careers.  Selected mathematics topics are included in “other concepts and skills.”  The 

course assumes only a high school precalculus background, does not employ calculus, and operates alongside 

traditional calculus-sequence courses.  Precalculus or first-semester calculus is typically taken concurrently with 

EGR 101, along with first-semester chemistry, whereas Physics I is typically taken the following semester.  Over the 

years, EGR 101 has included such math-oriented topics as number notation, graphing, sources of error, significant 

figures, uncertainty, and least-squares linear regression.  Both the problem-solving and mathematical topics serve 

two purposes:  1) students gain familiarity with tools useful in engineering; and 2) students apply their skills in 
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algebra, trigonometry, exponentials, and logarithms to engineering-related problems.  The first-order approximations 

module was developed to serve these two purposes as well. 

First-order approximations are themselves important mathematical tools which find application across science and 

the engineering disciplines.  A first-order approximation is key to the classic analysis of the simple pendulum.  

Likewise, first-order approximations are the heart of the common technique of linearizing nonlinear systems around 

an operating point as in the analysis and design of electronic circuits and control systems.  While first-order 

approximations are related to Taylor series expansions, a topic typically covered in a second or third term calculus 

course, first-order approximations are simple, algebraic formulas.  The module explores the first-order 

approximations of a number of functions which occur frequently in engineering, such (1+x)
n
, e

x
, sin x, and tan x.  

They are explored computationally rather than theoretically.  They are applied to specific problems to compute 

approximate solutions.  Applications include fuel mileage, square roots, and exponential growth and decay.  This 

exercises students’ math skills, builds their skills at applying mathematics, strengthens their understanding of 

nonlinear functions, provides tools for making “back of the envelope calculations,” and prepares them to see these 

concepts in greater depth later.  This module was implemented for the first time in the 2010 fall term and repeated in 

the 2011 fall term (EGR 101 is offered only in the fall term), so this paper’s results are preliminary.  The desired 

outcomes are: 1) enhanced retention and 2) improved performance in subsequent technical courses, most 

immediately in foundational mathematics and physics courses.  First-year to second-year retention and course grades 

in Calculus I and Physics I will be used for assessment. 

MODULE DESCRIPTION 

The module consists of two 50-minute lectures, accompanied by a homework assignment.  The specific functions 

included in the module are shown in Tables A-I and A-II in the Student Handout in Appendix A of this paper.  In 

class, the material is first motivated by a numerical example in which a first-order approximation simplifies the 

calculation of travel time given the distance and average speed.  This example, along with the other examples 

worked in class, is included in the Student Handout in Appendix A.  For completeness, after the initial example, a 

brief qualitative description is made of power series (without proof).  Power series and first-order approximations 

for the other common functions are then introduced. 

As shown in Appendix A, examples worked in-class apply first-order approximations to the calculation of travel 

time, fuel economy, square roots, exponential growth, pH, and the height of football goalposts.  These examples 

apply first-order approximations for (1+x)
n
, e

x
, sin x, and tan x.  They require knowledge of basic algebra, 

exponentials, logarithms, and trigonometric functions, and they require some creativity to manipulate the basic 

problem into a form suitable to the application of a first-order approximation. 

Initially in lecture, it is simply asserted that first-order approximations are valid for “small x,” which is broadly 

interpreted to mean that the magnitude of x is much less than one:  “|x| << 1.”  That is, the first-order approximations 

are implicitly based on Maclaurin expansions of the functions – linearized around 0.  After a number of examples 

have been worked, the question “How small is ‘small’?” is addressed in two ways.  First is a purely numerical 

approach: plot a specific function, its first-order approximation, and the percent error versus x.  An example of this 

is shown in “Figure 1” in the Student Handout in Appendix A.  This gives insight into the behavior of the particular 

function and its approximation, and the error for a given “small-ness” of x is clear. 

The second approach introduces a common engineering rule of thumb which interprets “much less than” to mean 

“less than by at least a factor of 10.”  That is “|x| << 1” is interpreted to mean “|x| < 10
-1

.”  This is justified by 

referring back to the general power series formula to argue that if x is “small” – on the order of 10
-1

 – then x
2
, the 

next term in the series, is “very small” – on the order of 10
-2

.  This is borne out by plots like “Figure 1” in Appendix 

A.  Therefore, without detailed knowledge of a function, a good rule of thumb is that first-order approximations 

yield reasonably accurate results when |x| is 0.1 or smaller. 

The homework assignment is included in Appendix B.  Students create plots of two functions, their first-order 

approximations, and the percent errors.  Students also apply first-order approximations to estimate: the side of a 

square given its area; the side of a cube given its volume; the capacitor voltage as a function of time in an RC 

circuit; the value of π; and the voltage across a non-linear two-terminal device (a semiconductor diode) as the 

current is varied around an operating point.  The problems are designed to be self-checking in that the student knows 

or is required to calculate exact values along with approximate values. 
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RESULTS 

Because this module was first implemented in the fall 2010 term and has run only two times, the results must be 

taken as preliminary.  The module’s effect on student retention and performance will need to be monitored over an 

extended period.  Moreover, it is expected that this module’s effect will be modest, in light of the fact that it 

constitutes one week of material in a fourteen week course. 

The students’ apprehension of the first-order approximations material was only fair at best, as indicated by scores on 

the homework assignment.  In 2010, the average score on the homework assignment was 78%, a C on a 10-point 

grading scale.  This was actually slightly above the overall homework average of 75%.  In 2011, the average score 

on the first-order approximations homework assignment was 59%, compared to 68% overall on homework.  Several 

students did not turn in the assignment in 2011, which brought this average down.  Overall, the first-order 

approximations homework assignment average was 66%, a D, compared to an overall homework average of 70%. 

Table I summarizes student retention and performance for the two years prior to implementation and the year and a 

half since implementation.  Data from only two years’ before implementation is shown, because, while the general 

format of EGR 101 has been unchanged since AY 2005-2006, significant retention-enhancement initiatives that 

were implemented in succeeding years had stabilized by AY 2008-2009.  Table I also includes relevant auxiliary 

retention and student profile data for reference.  The significant retention-enhancement initiatives implemented prior 

to AY 2008-2009 were: 1) introducing a Calculus I placement test and 2) postponing Physics I until after Chemistry 

I and Calculus I (previously, Calculus I and Physics I were taken concurrently the first semester).  The only other 

retention-enhancement initiatives implemented in the time-frame shown in Table I were: 1) creating an 

“Engineering Student Handbook” (AY 2009-2010) and 2) holding a “New Engineering Student Orientation” (AY 

2010-2011). 

The key first-year to second-year retention rate was 86% for the first year the first-order approximations module was 

introduced, 21 percentage points above the cumulative rate prior.  Data is not yet available for the second year, but 

the intermediate first-to-second semester retention rate (74% for 2011-2012 versus 86% for 2010-2011) implies that 

the cumulative first-year to second-year retention rate will be somewhat lower than 86%. 

The trend in Calculus I GPA is slightly negative, while the Physics I GPA is essentially flat.  The average composite 

ACT score for students in the first year of implementation is very close to the cumulative prior to implementation 

(27.6 prior to implementation and 27.9 the first year of implementation), but the 2011-2012 average ACT score is 

significantly lower (25.4), suggesting that the lower first-semester to second-semester retention is due to poorer 

academic aptitude/preparation, which is masking the benefits of the first-order approximation module. 

Table I.  Student retention and performance data before implementation (AY 2008-2009 and AY 2009-2010) and 

since implementation (AY 2010-2011 and AY 2011-2012). 

AY 

Retention GPA Auxiliary Data 

1
st
-2

nd
 Year Calculus I Physics I 1

st
-2

nd
 Sem. 

Ret. 

Average 

ACT 

No. 

Students 

08-09 62% 2.611 3.412 85% 27.0 26 

09-10 68% 2.556 3.000 82% 28.3 22 

Cumulative 65% 2.583 3.241 83% 27.6 48 

10-11 86% 2.444 3.000 86% 27.9 14 

11-12  2.286 3.333 74% 25.4 27 

Cumulative 86% 2.444 3.083 78% 26.1 41 
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CONCLUSIONS 

This paper has introduced a module of material on first-order approximations for freshmen engineering students and 

presented preliminary results on retention and success in Calculus I and Physics I.  Student performance on the 

material itself is fair at best, with a 66% homework average.  Calculus I and Physics I course grades show no 

improvement to date.  First-to-second year retention in engineering is 86%, 21 percentage points higher after 

implementation than before, though the long-term improvement is likely to be lower. 

To better understand the module’s effectiveness, it will continue to be a part of the first-semester freshman 

engineering course for at least one more academic year in order to further monitor the metrics of first-to-second year 

retention rates and Calculus I and Physics I grades. 
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APPENDIX A:  STUDENT HANDOUT 

Example 1:  Bob, a Union Engineering student, drives from Jackson, TN, to Nashville, TN, and back, a round-trip 

distance of 240 miles.  He travels at an average speed of 66 miles per hour.  Calculate the travel time exactly and 

approximately. 

Solution:  Average speed v , distance d, and time of travel t are related as: 

v

d
t

t

d
v =⇔=  

Exact answer:   hr...636363.3
miles/hr66

miles240
==t  

Approximate answer: 

Step 0:  hr
66

240

miles/hr66

miles240
==t  

Step 1:  hr
)1.1(60

240
=t  

Step 2:  hr
1.01

1
4hr

1.1

1
4

+
==t  

Step 3:  First-Order Approximation:  0.1-1
1.01

1
≅

+
 

Step 4:  hr9.04hr)1.01(4 ⋅=−⋅≅t  

hr6.3≅t  

Error: 1% 

 

Table A-I.  Power series expansions and first-order approximations of common functions. 

Function Power Series Expansion 

 

First-Order Approximation 

 

( )m
x+1

 

...
2

)1(1
2

+−++
x

mmmx  mx+1  

xsin
 

...
!7!5!3

753

+−+−
xxx

x  x  

xcos
 

...
!6!4!2

1
642

+−+−
xxx

 1 

xtan
 

...
315

17

15

2

3

753

++++
xxx

x  x  
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x
e

 

...
!5!4!3!2

1
5432

xxxx
x +++++  x+1  

)1ln( x+
 

...
432

432

+−+−
xxx

x  x  

Table A-II.  Some special cases of ( )m
x+1 and their first-order approximations. 

m Function First-Order Approximation 

 

-1 
( )

x
x

+
=+

−

1

1
1

1
 x

x
−≅

+
1

1

1
 

2
1  ( ) xx +=+ 11 2

1
 

2
11

x
x +≅+  

2
1−  ( )

x
x

+
=+

−

1

1
1 2

1
 

2
1

1

1 x

x
−≅

+
 

3
1  ( ) 33

1
11 xx +=+  

3
113 x

x +≅+  

3
1−  ( )

3

3
1

1

1
1

x
x

+
=+

−
 

3
1

1

1
3

x

x
−≅

+
 

 

Figure 1.  
x+1

1
, ( )x−1 , and the percent error vs. x. 
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Mathematical Background 

According to rules of calculus that you will learn in another term or two, a function that is differentiable around       

x = 0 can be represented by its power series expansion.  The general form is: 

...
!

)0(...
2

)0()0()0()( )(
2

+⋅++⋅′′+⋅′+=
n

x
f

x
fxffxf

n
n

  Eq. 1 

where the primed functions denote derivatives of the function f(x), and f
(n)

(0) is the n
th

 derivative of f evaluated at x = 

0.  This expansion is an exact representation of the function.  Approximating the function by truncating this series 

after the first-order term, the x
1
 term, results in a first-order or linear approximation for f(x). 

xffxf ⋅′+≅ )0()0()(  

It is called “first-order,” because it is a first-order polynomial, and “linear” because it is a line.  This approximation 

is valid for “small” values of x; that is, for 1|| <<x .  When the magnitude of x is much less than 1, the higher-order 

terms (higher order than the “zeroth” and first-order terms) in the expansion are much, much less than 1 in 

magnitude and contribute very little to the total value, so the error introduced by omitting them is acceptable in some 

situations. 

 

Example 2  On Bob’s road trip, he consumes 8.4 gallons of fuel.  What was his fuel mileage in miles per gallon 

(mpg)?  Calculate it exactly and approximately using a first-order approximation. 

Solution: 

Exact:    Fuel mileage 571.28
gal4.8

miles240
== mpg 

Approximate:   Fuel mileage 
4.08

240

+
=  

      
( ) 05.01

1

8

240

8/4.018

240

+
⋅=

+⋅
=

 

)05.01(30
05.01

1
30 −⋅≅

+
⋅=  

95.030 ⋅≅  

At this point, we could calculate this with our calculator or pencil and paper to be:  28.5 mpg 

Alternatively, you could observe that this is 5% less than 30, and 5% of 30 is 1.5 (half of 3 which is 10%), so the 

approximation is:  30-1.5 = 28.5 mpg. 

Error:  0.25% -- Excellent! 

Example 3  Calculate 10 exactly and approximately using a first-order approximation. 

Solution: 

Exact (calculator):   16227766.310 =

 

 

Approximate:    







+⋅=+=

9

1
191910  
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2

1

9

1
13

9

1
1310 








+⋅=+=  

     05555.13
92

1
1310 ⋅=









⋅
+⋅≅  

     16666.310 ≅  

Error:  0.14% -- Excellent! 

If we had further approximated 05.1
92

1
1 ≅









⋅
+ , we would have obtained 

15.310 ≅  

with an error of 0.39%, still very good. 

Example 4  Suppose there is a culture of cells that doubles in number every 10 hours.  Given that there are 1000 

cells initially, how many cells will there be after 2 hours?  Calculate the number exactly and approximately using a 

first-order approximation. 

Solution: 

Population P(t):  
10/21000)( ttP ⋅=  

where t is in hours 

Exact (calculator):  114921000)2( 2.0 =⋅=P  

Approximate:   ( )2.02ln2.0 100021000)2( eP ⋅=⋅=

 

    

( )2ln2.01000)2( ⋅⋅= eP

 
First-order approximation: xe

x +≅ 1

 

    

2ln2.012ln2.0 ⋅+≅⋅
e

 

    

( ) 11392ln2.011000)2( =⋅+⋅≅P

 
Error:  0.87% -- Excellent! 

Example 5  The pH scale is used in chemistry to measure acidity or basicity.  The definition of pH is: 

]H[logpH 10

+−=  

Where [H
+
] is the concentration of hydrogen ions in moles per liter.  A certain brand of vinegar has a nominal 

hydrogen ion concentration of 6.3×10
-3

 mol/L. 

a. Calculate the pH of the vinegar with the nominal concentration. 

b. Calculate the pH if the concentration is 5% above nomimal.  Calculate both exactly and via a first-order 

approximation. 

Solution: 

a. 201.2103.6logpH 3

10 =×−= −
 

b. Exact:   ( ) 179.205.1103.6logpH 3

10 =⋅×−= −
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Approximate: 

( ) 05.1log103.6log05.1103.6logpH 10

3

10

3

10 −×−=⋅×−= −−
 

( )
10ln

05.01ln

10ln

05.1ln
05.1log10

+
==  

0217.0
10ln

05.0
05.1log10 =≅  

179.20217.0103.6logpH 3

10 =−×−≅ −
 

Error:  0% to 3 decimal places 

Example 6  A team of engineering students sets out to measure the height of the goal posts on a local high school 

football field.  They do this not by climbing the goal posts and measuring the height directly but by measuring the 

angle from the ground to the top of the goal posts as seen from the opposite goal line.  This angle is measured to be 

5.2°.  What is the height?  Calculate exactly and approximately using a first-order approximation.  Note that the field 

is 300 feet long, and the end zone is 30 feet long. 

Solution: 

Exact:    
330

2.5tan
H

=o
 

o2.5tan330=H ft = 30.0 ft 

Approximate:  5.2° = 
o

oo

180
2.52.5

π
⋅= rad = 0.0908 rad 

xx ≅tan for small x 

0908.0tan330=H ft 0908.0330 ⋅≅ ft 

96.29≅H ft 0.30≅ ft 

Error:  0% to 1 decimal place 
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APPENDIX B:  HOMEWORK ASSIGNMENT 

Use Excel to create any plots. 

1. To investigate the approximation 

xx ≅sin   for small x 

plot sin x vs. x and x vs. x  for -1 ≤ x  ≤ 1 on the same graph.  Reference these to the left vertical axis.  On 

the same graph, plot the percent error of the approximation vs. x, referenced to the right vertical axis.  

Recall that 

Percent error %100
sin

sin
×

−
=

x

xx  

2. To investigate the approximation 

xx ≅tan   for small x 

plot tan x vs. x and x vs. x for –1 ≤ x  ≤ +1 on the same graph.  Reference these to the left vertical axis.  On 

the same graph, plot the percent error of the approximation vs. x, referenced to the right vertical axis.  

Recall that 

Percent error %100
tan

tan
×

−
=

x

xx  

3. A square has an area of 90 cm
2
. 

a. Calculate the length of a side exactly. 

b. Calculate an approximate length of a side using a first-order approximation. 

c. Calculate the percent error of the approximate value. 

4. A cube has a volume of 1100 cm
3
. 

a. Calculate the length of a side exactly. 

b. Calculate an approximate length of a side using a first-order approximation. 

c. Calculate the percent error of the approximate value. 

5. In a “resistor-capacitor” (“RC”) circuit, the capacitor is initially discharged with a voltage across it of zero.  

At time t = 0 s, the switch closes, and the capacitor charges up.  For R = 10
6
 Ohms and C = 10

-6
 F, the 

voltage across the capacitor for t ≥ 0 s is given by: 

)1(10)( t
etv

−−⋅= V 

Find the value of the voltage at t = 0.1 s, 0.2 s, and 0.5 s both exactly and using a first-order approximation. 

6. Use the fact that 
2

1

6
sin =

π
 along with the first-order approximation for sin x to obtain an approximate 

value of π. 

Comment and Hint:  You might observe that π /6 is not “much less than” one and therefore not expect the 

resulting estimate to be very good.  However, due to the particular characteristics of the sine function, such 

as the next highest term in its expansion being 3
rd

 order rather than 2
nd

 order, the percent error of the 

estimate is only 4.5%.  By the way, this value is an ancient estimate of π .  The Bible alludes to it in 1 

Kings 7:23. 

7. A certain two-terminal electronic device has the following “I-V relationship” (that is, the current through 

the device is related to the voltage across it): 

( )IV ⋅⋅=
9

10ln05.0 V 

The current I is in amperes (A), and the voltage V is in volts (V).  The device is operated at first with a 

current of 0.001 A. 

a. What is the voltage V initially (that is, for current I = 0.001 A)? 

b. What is the voltage V if the current increases from 0.001 A to 0.0011 A?  Calculate it exactly and 

by means of a first order approximation.  You will need to do a little algebraic manipulation and 

use your knowledge of logarithms in order to apply the first-order approximation for ln(1 + x). 

c. What is the voltage if instead the current decreases from 0.001 A to 0.0009 A?  Calculate it 

exactly and by means of a first order approximation. 

Extra Credit  Find an approximate value of π using the fact that 
2

3

6
cos =

π and the second- and fourth-order 

approximations for cos x. 


