
2009 ASEE Southeast Section Conference

Preparing Systems Engineers of Tomorrow
Ravi Shankar1

Abstract – The US Bureau of Labor Statistics has documented a definite and remarkable shift in jobs away from
emphasis on programming and logic design towards emphasis on systems, applications, and management. We need
to reorient our curriculum and our students to develop systems design skills in these students. An engineering
product designed in a vacuum without appropriate stakeholder input may fail in the marketplace. Engineering
students lack real-life skills and motivation to interact with stakeholders in other domains and to develop relevant
commercial products for them. We believe that a top-down system design flow, built around UML (Unified
Modeling Language), can provide a well-charted pathway for students to develop these skills with less anguish. We
offered such six different projects for our students in a course on software-hardware codesign and helped them to
incrementally develop their system designs, using UML. We will present our results in the paper.

Keywords: UML, System Design, Model Driven Architecture (MDA), Co-Design

BACKGROUND

An engineering product designed in a vacuum without appropriate stakeholder input may fail in the marketplace.
Despite ABET’s guidance to the contrary, both professors and students in engineering lack the real-life skills and
motivation to develop commercially relevant products. Many working engineers are content to focus on engineering
issues, such as coding, logic design, and testing. Unfortunately, such pure engineering jobs can be automated, out-
sourced, and migrated to technicians, as they are well-defined and really not that challenging anymore – witness the
availability of low cost components and the popularity of component-based design, in software and hardware. More
unfortunately, the same engineering professional might consider management and systems engineering below
his/her intellectual and engineering capabilities. However, as per the US Bureau of Labor Statistics, the net
employment increase over the next decade (2006 to 2016) in many computer occupations with focus on systems
software, applications, and management will be 40 %, with a median annual salary of about $89K [1]. This may be
compared with growths of -4% and 4% for computer programmers and computer hardware engineers, respectively,
with respective median annual salaries of $65.5 K and $88.5K. This clearly dictates a shift away from the emphasis
on programming and logic design towards systems, applications, and management.

METHOD

We recently revamped our course on software-hardware codesign to emphasize a top-down flow with UML version
2.0. Key to this was the availability of a well written book on UML (unified modeling language) with a good case
study of a wireless handheld computer system [2]. UML is a visual modeling language that enables system designers
to express their designs in a standard easy-to-understand way, and communicate these ideas effectively with
different stake holders such as the customer, the business manager, and the engineers involved in hardware and
software implementation. System design involves communication among people and miscommunication can cause
design errors that can cause re-designs, design compromises, and/or field failures, after the product has been
prototyped. These are costly mistakes and impact engineering design productivity substantially. An error
inadvertently introduced at the requirements level is equivalent to 130 errors introduced at the prototype integration
stage, in terms of engineering effort involved to fix it [3]. Such concerns have brought about the development of
UML. UML is a collection of diagrammatic views that together provide a model of the system. One does not need
all the UML diagrams, to describe a system. UML 2.0, the current standard, has 13 types of diagrams that may be

1 Professor, Florida Atlantic University, Boca Raton, FL 33431, ravi@cse.fau.edu

2009 ASEE Southeast Section Conference

divided into three types: 6 are useful for representing structure; 3 others are useful to describe behavior and the
remaining 4 others are useful for depicting interactions. Typically, one uses class, object, package, and deployment
diagrams from the structure diagram set; activity, use case, and state machine diagrams from the behavior diagram
set; and sequence diagram from the interaction set.

The text book [2] details a case study of a wireless unit that serves to connect various workers at a restaurant with
the primary objective of providing the patron a satisfying experience of dining out. However, it also helps to
enhance the productivity of the restaurant workers and reduce their stress. The system design flow is intended for
object oriented systems and follows the process of Requirements Gathering, Analysis, Design, Development, and
Deployment. The book covers the first 3 stages; the last two stages are implementation stages that may be addressed
with .NET from Microsoft. The stage of Requirements Gathering involves the discovery of the business processes
(by interviewing the domain experts and summarizing the process with activity diagrams), domain analysis
(identification of classes, their attributes, and operations – the first cut), identification of cooperating systems (a
deployment diagram is the product), and discovery of system requirements where all the stakeholders meet to
identify high level areas of system functionality (a package diagram is the result, with each package representing a
set of use cases that are to be implemented to achieve that system functionality). This is followed by the Analysis
stage, which involves the following steps: flesh out use cases, refine class diagrams, identify states in the objects
(with a state diagram), define interactions among objects (with a sequence diagram), and integrate with cooperating
systems. The next stage of Design involves: object diagram refinement, development of component diagrams,
planning for deployment, development of the user interface, and design tests. This is followed by the stages of
Development (and testing) of code and Deployment (hardware integration and testing). We covered the book’s
case study in detail in the class. To ensure that the students had specific goals and applied the concepts in parallel,
we identified projects and provided assignments that paralleled the case study.

We derived inspiration from our industry collaborations/ innovations to identify 6 potential team projects for the
students. We provide below titles and requirements provided for these projects:

1. Personalized Commencement (or Graduation Ceremony): Provide the students the ability to include a
sound clip with proper pronunciation of their names so when they walk over to the podium to pick up their
graduation certificate, everyone hears proper pronunciation of their names. Add the ability to showcase a 5
s video strip of their personal life when they accept their certificate.

2. Self-blood pressure management kit: Today's blood pressure monitoring systems are fairly old-fashioned.
Today, there are different types of therapies based on drugs, diet, exercise, meditation, etc., to reduce blood
pressure. The patient and his doctor want to know which subset of these is helping and should be continued
on a long term basis. Design a system for this.

3. University class scheduling: Assume a typical university with 25000 students, 1000 faculty members, 2000
courses, and 500 rooms available Mo-Sa, 8 AM to 7 PM. Classes are to be 50 minutes long, with 10 minute
break between class periods. Assume that the classes hold 50 or more students each. Assume that 100 of
these class rooms have advanced equipment for projection and internet access. Faculty members have
teaching preferences (MWF or TRS). Each faculty member can teach 4 courses, of which he/she will be
assigned 2 depending upon their preferred days of teaching, class room availability, and type of room
available. Design a system that mimics the functioning of the scheduling department. The numbers given
are representative only. Plan on developing a generic scalable version.

4. Sound interface to PC for Pre-K and Kindergarten children: This will be useful for 3 to 7 year olds. They
are too young to use the PC, but would like to. Conceptualize a system that can be used to teach these
youngsters and help them learn alphabets and numbers (for the really young) and grammar and arithmetic
(for the older ones). This may be used at home with the help of a parent or at school with the help of a
teacher, who could use it to teach the group as a whole (they use handheld devices in middle and high
schools now, to determine how many and which of the students got an answer right).

5. File tracking in a law firm: A successful legal firm has 100 legally trained employees (lawyers, legal clerks,
etc.,). They have thousands of cases at various stages of progress. They work in groups of 5 on each case,
and not necessarily the same 5 together always. Design a system that can provide PC-based information to
all the employees on the current location of the case file. The employee, on a prioritized basis, can check
out the file and return it, after a few days, to any of the several convenient central locations.

2009 ASEE Southeast Section Conference

6. Poll worker Aid: Design a system that can help track the activities at multiple sites in a county so the
electoral polling proceeds smoothly and the results are conveyed promptly and fully to a central location.
This topic was inspired by polling boxes that were misplaced in the Palm Beach County.

The projects addressed the following: meet stakeholders (typically 3 to 5) in that domain to develop activity
diagrams; identify class diagrams and associations (from nouns and verbs of the activity diagrams); conceptualize
use cases; chart sequence diagrams and state diagrams; and design the user interface. To bring attention to the
business and IT aspects, we added one more step: integrate an on-line business and IT interfaces. The process is
completed by evolving a pseudocode/XML/Java/SystemC description of the skeleton code that clearly identifies the
components, their interaction, and their internal behavior. Code development and component integration was not
part of this course offering.

FIGURE 1: ACTIVITY DIAGRAM

2009 ASEE Southeast Section Conference

FIGURE 2: CLASSES OF THE PPMS SYSTEM

.

FIGURE 3: PATIENT CLASS AND ITS ASSOCIATIONS

Doctor

Patient

Pharmacist

Nutritionist

BP reading
PPMS

Medication

gets medication from

gets

Check BP
daily using

reports/visits

gets diet/exercise plan from

Check -up

takes

gets

2009 ASEE Southeast Section Conference

FIGURE 4: THE PATIENT CLASS

FIGURE 5: SEQUENCE DIAGRAM: PATIENT ENTERS BLOOD PRESSURE READING

2009 ASEE Southeast Section Conference

RESULTS

All the student groups completed the projects to a reasonable extent. We have published the three good designs at
our center’s website [4, 5, and 6]. We use documentation of one group, who designed the Pressure (Perfect)
Monitoring System, PPMS [4], to illustrate the design.

Figure 1 presents the activity diagram that the students developed at the start of the project. This eventually led to
the classes of the PPMS system presented in Figure 2. These individual classes relate to each other (form
associations with each other) in very specific ways. The patient class relates to every other class. Although one of
the goals of PPMS was to facilitate communication between patients and the medical world, it was important that
PPMS focused on the needs of the patient. The patient was assumed to be ultimately responsible for keeping track
of his/her own progress; therefore, the student group geared PPMS to be a system which primarily assists the
patient's needs. For this reason, the patient class will associate with every other class. See Figure 3. The patient
class and its virtual representation in the system are illustrated in Figure 4.

Use cases are detailed in [4]. We present one specific use case below, relevant to Patient Interface in PPMS:

Enter Blood Pressure Reading
Description

-patient enters their daily blood pressure reading which they received from their in-home
blood pressure monitor
Assumptions

-there is a patient interface on PPMS that allows for input data
-patient has taken their blood pressure
-patient has an in-home blood pressure device

Precondition
-patient has taken their daily blood pressure reading

Postcondition
-Daily blood pressure reading has been entered into the database and saved

Steps
-patient brings up user interface for entering blood pressure on PPMS
-patient enters the reading manually or selects to download it from the electronic in-
home BP device
-reading automatically saves to database following a successful entry/download

Benefiting Actor
-Patient

We next present one specific sequence diagram for the use case of patient entering blood pressure reading. See
Figure 5.

Pseudo code for the above sequence diagram is presented below:

 void EnterBPReading()
 {
 int fetch = fetchBPreading();

If (fetch = null)
 {

 enterBPReading();
 connect_database;
 sendBPReading();
 saveBPReading();
 disconnect_database; // disconnect and return
 }

else

2009 ASEE Southeast Section Conference

 {
 connect_database;
 int send_reading = sendBPReading();
 if(send_reading = null)

{
exit; // return back to UI

}
 saveBPReading();
 disconnect_database; //disconnect and return
 }

 }

FIGURE 6: PSEUDO CODE: PATIENT ENTERS BLOOD PRESSURE READING

The design projects ended with documentation of pseudo code and user interface design (not shown here). Most
students did not implement the business and IT interfaces. The course is being offered again this semester with 10
different projects. Students will be asked to build in these additional interfaces.

We expect to implement two of these projects in .NET with web services. This will also be posted at the website. All
the designs involve multiple types of users with their own unique interfaces. Thus, the self-blood pressure
management kit will have web interfaces for the patient, doctor, pharmacist, and the nutritionist, in addition to the
required business/social and IT interfaces. The group will help the patient manage his/her blood pressure with
different interventions and with few side effects, as appropriate. The business/social interface may help the patient
connect socially with other patients, while the IT interface will be used by the business to maintain and improve the
system.

DISCUSSION

Some of the groups tried to bypass the step of interviewing domain experts. This resulted in use cases such as
expecting a 4 year child to launch his own lesson from the PC (a teacher or a parent should have set it up for the
child); and expecting a poll worker to wait to hand over the ballot box to the transporter (we told the team that
automation also meant less manual supervision). Sequence diagrams use arrows to point to the object being invoked
and the arrow should be labeled with that object’s operation being invoked. Some students did not appreciate the
concept and labeled the arrows with respect to the source of the arrow. This may be more intuitive, but does not help
in helping the code developer implement the code using object oriented design. In sequence diagrams, time moves
down along the life line; so, one follows the sequence from top to bottom to understand the flow of control. The
students showed sequences going in opposite directions. By having students make presentations to the class and
pointing out these errors politely, we believe, the group progressed as a whole. There is no automatic way to check
completeness of the diagrams. For example, Patient UI is missing a function call represented in Figure 5.

UML is a big step forward. On the other hand, UML is not intuitive, because it spreads the information across many
diagrams, making it difficult to track the system design and to gain an intuitive feel. We have started exploring OPM
(Object Process Methodology) which combines objects and processes in the same diagram which can be
hierarchically refined [7]. It provides the diagram in both visual and textual format, thus facilitating brainstorming
and automatic code generation (at least at the level of skeleton code). Its biggest advantage may be at the level of
requirements capture to extract the process flow from domain experts. One may wish to add this to model class
diagrams obtained after the initial step of the use of UML’s activity diagrams (to brainstorm with domain experts).
Result will be a specifications document that can be translated automatically. We plan to explore its inclusion as it is
very intuitive and students may find it useful to better integrate their thought processes.

We have had to hold several face-to-face meetings with the teams to get students to make progress. We found the
teams to be uniformly distributed among motivated, reluctant, and disinterested. This is understandable, because the
top-down design process requires time and effort up front to get the user requirements and engineering

2009 ASEE Southeast Section Conference

specifications right. Our own experience with companies shows that both managers and engineers feel that engineers
are not being productive during this period. However, without this methodical approach, there is significant effort
involved in development, integration and debugging. We have seen this personally in our ABET accreditation
documentation [8]. We developed the CE Self-Study report with a disciplined top-down approach which has led to
program accreditation without any revisions. This was not the case with other programs’ self-study reports. Net
result is that the methodical top-down approach actually reduces the development period and increases success of
the developed product.

A few success stories will convince the future generations of graduates to take this process seriously. With that in
view, we expect to evolve collaboration with the college of business to involve their BBA and MBA students in
taking these specific projects forward as their business ventures. For that, we would have to implement the design
and test it. We plan to integrate .NET in next semester’s course, albeit with simpler class projects that can be taken
all the way from UML to implementation with .NET. A unified approach to go from concept to commercialization
will hopefully prove useful and worthwhile.

CONCLUSION

We have evolved a course that uses UML for top-down system design. There were six unique team projects that the
students worked on. We expect to implement a few of them with .NET. Subsequent course offerings will integrate
both UML and .NET so the students can fully appreciate the consequences of the decisions they made at the
requirements level, and also to provide them with a sense of accomplishment by demonstrating their real
implementations.

REFERENCES

 [1] Bureau of Labor Statistics, http://www.bls.gov/, accessed on December 08, 2008
 [2] Schmuller, J., SAMS Teach Yourself UML in 24 Hours, 3rd edition, 2004.
 [3] Bennett, T.L., and Wenberg, P.W., Eliminating Software Defects Prior to Integration Test, CrossTalk,

 December 2005, pg. 13-18
[4] Mendolla, M., and Pillai, V., Top-Down Design with UML: Pressure Perfect Monitoring System, Student

Report-3, http://www.csi.fau.edu/display/pub/Home#Home-studentReports
[5] Brown, A., and Baptiste, L., Top-Down Design with UML: File Tracking System, Student Report-5,

http://www.csi.fau.edu/display/pub/Home#Home-studentReports
[6] Norona, C., and Templetron, R., Top-Down Design with UML: University Class Scheduling, Student

Report-4, http://www.csi.fau.edu/display/pub/Home#Home-studentReports
[7] Dori, D., Object Process Methodology: A Holistic Systems Paradigm, Springer, 2002
[8] Shankar, R. and Agarwal, A., KISMET: An Open Source Process For Faculty Participation in ABET

Accreditation, submitted to 2009 ASEE Southeastern Section Annual Conference, Marietta, GA, April 2009

Ravi Shankar

Ravi Shankar is a professor in the computer science and engineering department at Florida Atlantic University
(FAU). He is the director of a college-wide center on systems integration. He holds a PhD from the University of
Wisconsin, Madison, WI, and an MBA from FAU. He is a registered PE and a Fellow of AHA. Over the past six
years, he has coordinated the efforts of a large group of faculty members and students from computer engineering,
computer science, and electrical engineering, to address Motorola’s goal to radically increase their engineering
design productivity. Motorola has provided $1.1 M in grants towards this goal. Significant progress has been made.
Most of the publications are available at the center’s website: www.csi.fau.edu. He has now started applying
principles learnt in the research project to model and improve other complex processes.

