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A Multicourse Effort for Instilling Systematic 
Engineering Problem Solving Skills Through the Use 

of a Mathematic Computer Aided Environment 

Rogelio Luck1 and B K. Hodge 

Abstract – This paper describes a coordinated, multicourse effort in the Mechanical Engineering (ME) 
Department at Mississippi State University (MSU) to inculcate disciplined/systematic engineering problem solving 
skills through the use of mathematical worksheets such as those found in Mathcad. The advantage of these 
worksheets is that, with proper guidance, students can learn a systematic methodology that allows for a better 
understanding on how to approach and solve engineering problems as compared to using pencil, paper, and graphing 
calculators. For ME students at MSU, these worksheets are required in three courses: Engineering Analysis, System 
Dynamics, and Energy Systems Design. A significant advantage to sequencing courses in this manner is that 
students spend more time (and effort) in engineering functions (formulation, verification, and validations) than in the 
arithmetic function (primarily accomplished by Mathcad).  Details, examples, and assessment of effectiveness are 
discussed in the paper. 

Keywords:  Problem solving, computer aided environment, and engineering approach. 

INTRODUCTION 

One important objective in engineering education is to inculcate in the students a systematic and practical approach 
to problem solving. Traditionally, this has been largely accomplished through the use of homework following 
guidelines for problem formulation and solution using engineering paper and handheld calculators. However, the 
widespread availability of laptops and user-friendly mathematical computer solvers is displacing the use of 
calculators in favor of worksheets from mathematical CAD programs such as Mathcad and Maple.  The features 
available in these programs include automatic recalculation, copy, pasting, and line editing of equations and text, 
symbolic processing, automatic handling of engineering units, and instantaneous graphic capabilities. Students can 
spend more time and effort in engineering functions such as problem formulation, solution, verification, and 
validation rather than recalculating results and plots each time a mistake is found or a parameter is perturbed.    

On the other hand, without careful guidance, the use of these worksheets can quickly degenerate into careless and 
pointless use of equation solvers, displaying the solutions using a mismatched set of units, and generating the wrong 
algebraic solutions.  Also, often, the software itself is not fully debugged and displays erroneous results.   Thus, the 
students must be carefully coached on the correct use of these mathematical worksheets.  This is achieved by raising 
the expectations on the problem formulation/solving documentation procedure plus an added emphasis on 
verification and validation (V&V) of the results.  A benefit of V&V is that students spend more time rethinking the 
entire solution process in terms of the physical meaning of the results and the mathematical well-posedness.  The 
genesis of the evolution of the authors’ realization of the pedagogical impacts of mathematical computer solvers on 
engineering education is documented in Hodge and Taylor (1998), Hodge (2005), and Hodge and Luck (2006). 
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At the ME department at MSU, these worksheets are used in three courses: Engineering Analysis (EA), System 
Dynamics (SD), and Energy Systems Design (ESD).  Disciplined, systematic problem solving skills are inculcated 
through the use of strictly enforced homework format in EA and SD.  The homework format consists of clearly 
formulated Given, Find, Solution, and Verification/Validation sections.  Pictures and sketches are introduced into 
the worksheets by copying and pasting from computer generated sketches or drawings, by browsing the internet, or 
by scanning.   Students are required to carefully read the problem statement and summarize this information in the 
Given section of the homework. The variables to be found or the design requirements are to be listed in the Find 
section.  It is interesting that the Given and Find sections of the homework format are in congruence with the Given 
and Find formulations in Mathcad for solutions of algebraic and differential equations. This helps reinforce the 
importance of describing the problems in a well-posed manner.  The Verification/Validation section is considered of 
equal importance as the Solution section and is addressed and graded accordingly. Students are required to show that 
their answers are reasonable by checking that the units are consistent, the magnitudes are reasonable, and the 
models/equations behave as expected.  The physical units processing as well as the 2D and 3D plotting features of 
Mathcad are heavily used in these sections. Finally, the ESD course takes the previously acquired problem solving 
skills one step further into engineering design scenarios.  

The following sections will describe the philosophy behind the courses and details and examples of typical 
homework. 

ENGINEERING ANALYSIS (EA) COURSE 

Philosophy behind the Engineering Analysis (EA) course:  

A main objective behind the EA course is to consolidate the mathematical skills acquired during the freshman and 
sophomore years while emphasizing their use in posing and solving engineering problems. This is partly 
accomplished through the process of learning how to use Mathcad. Students are introduced to Mathcad functionality 
by demonstrating how to define functions, perform differentiation and integration, simplify systems of algebraic and 
trigonometric expressions, perform series analysis, find optimal solutions, fit equations to data, and solve differential 
equations. They are asked to verify and interpret the results using units, magnitudes, and graphical comparisons.  
This process of verification and interpretation allows them to focus on the definition and meaning of the 
mathematical expressions used to describe engineering problems.  

Example 1  

Figure 1 illustrates the typical homework format and how a Mathcad worksheet is used in a homework set to review 
basic concepts of integration and differentiation, and, more importantly, to introduce the process of verification.   
The same philosophy of verifying the results in order to review key mathematical concepts is used in several 
homework sets covering topics such as Taylor Series and truncation errors, root finding, maximization/mini-
mization, and polynomial fitting. 

Example 2  

Figure 2 examines a homework problem where students practice how to setup a problem in matrix form and verify 
the solution.  Given air flowrates in and out of a restaurant and carbon dioxide concentrations in the incoming air as 
well as carbon dioxide generation by smokers and by the kitchen grill, students are asked to find the equilibrium 
concentrations of carbon dioxide in each room in the restaurant. This time, the verification is based on an important 
engineering concept: conservation of mass. The idea here is to use basic understanding of equilibrium, 
compatibility, and energy and mass conservation equations to verify the solutions. Typically, students are asked to 
verify the consistency of the units of the results of the calculations. This is not done in this example as all parameters 
are defined using their respective units and Mathcad will not proceed with a calculation unless all units are 
consistent. 
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Problem 1.

Given : The function  f x( ) esin x( ) cos x( )⋅ 1+:= . 

Find : Use Mathcad to

a)  Calculate the derivative of f(x) when x
π
4

:=

b)  Calculate the integral of f(x) in the interval  0 x≤ π≤

Use mathcad graphic capabilities to verify the solutions.

Solution :
Answer a) Answer b)

x
f x( )d

d
0.42−=

0

π
xf x( )

⌠
⎮
⌡

d 3.14=

Verification :

The validation consists in approximating the derivatives by the approximate slopes
and the areas (integrals) by the areas of a box of height equal to the mean value in
the interval of interest.

0.7 0.8
2.3

2.4 2.4

2.45
f z( )

f
π

4
⎛⎜
⎝

⎞
⎠

0.737 0.847

z
π

4
, 

a)

The trace function was used to collect the following data from the plot on the left:

point 1 x1 0.737:= y1 2.45:=

point 2: x2 0.847:= y2 2.40:=

slope at x=
π
4

Slope
y2 y1−

x2 x1−
:= Slope 0.45−=

Thus the slope left of -0.45 is quite close to the exact value of -0.42  

Figure 1. Worksheet for Example 1. 
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b)

sqr

0

π

π

0

0

0

0

1

1

0

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟

⎠

:= area1
2.2

.7
⎛
⎜
⎝

⎞
⎠

:= area2
.2−

2.5
⎛
⎜
⎝

⎞
⎠

:=

0 1 2 3
1−

0

1

2

3

0

2f z( )

sqr 1〈 〉

area10

area20

z sqr 0〈 〉
, area11, area21, 

Note that the area (X) bounded on the top by the red curve and on the bottom by y= 2
cancels out the area (X) bounded on the top by y=0 and the bottom by the red curve.  

The area of the blue box is roughly equal to the area f(z).

ApproxArea 1 π⋅:= ApproxArea 3.142=

Thus, the answer appears reasonable as it is quite close to the graphical
approximation.

 

Figure 1. Concluded. 
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Given: The following schematic for Carbon Monoxide Distribution in a Restaurant

Entrance
1

Non-
Smoking

2

Smoking
3

Kitchen

Grill Load
(3000 mg/hr)

Qd=150 m3/hr

30 m3/hr

30 m3/hr

60 m3/hr

Qc=200 m3/hr

Qb=100 m3/hr
cb = 2 mg/m3

Qa=250 m3/hr
ca = 2 mg/m3

Smoker Load
(300 mg/hr)

Smoker Load
(1000 mg/hr)

15 m3/hr

4                 5

Monoxide Gas Distribution in a Restaurant

Find: a) steady state carbon monoxide concentration in each room

b) percent contribution in section 4 from smokers, grill, and outside air

Solution:

Labelling the volumetric flowrates and the concentrations of carbon monoxide.

E1 30
m3

hr
:= Qa 250

m3

hr
:= Qb 100

m3

hr
:= Qc 200

m3

hr
:= Qd 150

m3

hr
:=

E2 15
m3

hr
:= Ca 2

mg

m3
:= Cb 2

mg

m3
:=

E3 30
m3

hr
:= S1 300

mg
hr

:= S3 1000
mg
hr

:= S5 3000
mg
hr

:= E4 60
m3

hr
:=

The following equations represent the balance of the carbon dioxide flow in each room.

Qa Ca⋅ S1+ E1 C2 C1−( )⋅+ Qa C1⋅− 0=

Qb Cb⋅ Qa C1⋅+ E1 C1 C2−( )+ E3 C3 C2−( )+ Qc C2⋅− Qd C2⋅− E2 C4 C2−( )+ 0=

Qc C2⋅ E3 C2 C3−( )+ Qc C3⋅− S3+ 0=

Qd C2⋅ E2 C2 C4−( )⋅+ Qd C4⋅− E4 C5 C4−( )⋅+ 0=

Qd C4⋅ E4 C4 C5−( )⋅+ S5+ Qd C5⋅− 0=
 

Figure 2. Worksheet for Example 2. 
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Solution using the inverse matrix method:

F

E1− Qa−

Qa E1+

0

0

0

E1

E1− E3− Qc− Qd− E2−

Qc E3+

Qd E2+

0

0

E3

E3− Qc−

0

0

0

E2

0

E2− Qd− E4−

Qd E4+

0

0

0

E4

E4− Qd−

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟
⎟
⎟

⎠

:= R

Qa− Ca⋅ S1−

Qb− Cb⋅

S3−

0

S5−

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟

⎠

:=

Answer a)C1

C2

C3

C4

C5

⎛

⎝

⎞

⎠

F 1− R⋅:=

C1

C2

C3

C4

C5

⎛

⎝

⎞

⎠

3.227

3.452

7.8

8.647

22.933

⎛

⎝

⎞

⎠

mg

m3
⋅=

b) percentage contributions in Room #4

coeffsinverse F 1−
:= Answer b)

smoker
coeffsinverse3 0, S1−⋅ coeffsinverse3 2, S3−⋅+

C4
:= smoker 14.222 %⋅=

grill
coeffsinverse3 4, S5−⋅

C4
:= grill 62.649 %⋅=

intake
coeffsinverse3 0, Qa− Ca⋅( )⋅ coeffsinverse3 1, Qb− Cb⋅( )⋅+

C4
:= intake 23.129 %⋅=

Verification:

Conservation of mass means that the total amount of carbon monoxide entering the building
must equal the amount leaving.  Because we are writting this equation independently of the
previous derivations, these answers seem to be reasonable as shown below.

Qa Ca⋅ S1+ Qb Cb⋅+ S3+ S5+ Qd C5⋅− Qc C3⋅− 0
kg
s

=

The carbon monoxide contributions from each area are reasonable in that they add up to 100 %.

smoker grill+ intake+ 100 %⋅=  

Figure 2. Concluded. 
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Example 3  

Figure 3 illustrates a homework problem where students practice solving systems of first-order differential equations 
using the built-in differential equation solvers from Mathcad and verify the solutions using steady-state information 
as well as conservation of energy.  

Problem 1 .

Given : Consider the water heater problem shown below. The thermostat setting for turning the heaters
off is 130 F. Assume a water flowrate demand of 2gpm starting 100 minutes after turning on the
heaters and the same thermostat settings for both water heaters.

Find  : plot the temperature of the water leaving each water heater until steady state temperatures are
reached.

Solution :

Example of a household water heater :

KfromF T( ) T 32−( )
5
9

⋅ 273+:= ( Convertion function from degrees F to K )

FfromK T( ) T 273−( )
9
5

⋅ 32+:= ( Convertion function from degrees K to F )

kJ 1000 J⋅:=

Cp 1
cal

gm K⋅
⋅:= ( Cp of water ) ρ 1000

kg

m3
:= ( Density of water )

V1 50 gal⋅:= V2 25gal:= ( Volume of water tank 1 & 2 )

Tin KfromF 50( ) K⋅:= Tin 283 K= ( Inlet water temperature )

Ta KfromF 65( ) K⋅:= Ta 291.333 K= ( Ambient temperature )
 

Figure 3. Worksheet for Example 3. 
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Q t( ) 2
gal
min

⋅ t 100min>if

0 otherwise

:= ( Flowrate : Start the flow after 100 min )

Qgen1 T( ) 6600W⋅ T KfromF 130( ) K⋅<if

0 otherwise

:= ( Heater ON if the temp. is below 130F )

Qgen2 T( ) 4400W⋅ T KfromF 130( ) K⋅<if

0 otherwise

:=

Using an energy balance to solve for the time rate of change (Slopes) of the temperatures :

Slopes t T, ( )

1
ρ Cp⋅ V1⋅

ρ Cp⋅ Tin Ta−( )⋅ Q t s⋅( )⋅ ρ Cp⋅ T0 K⋅ Ta−( )⋅ Q t s⋅( )⋅− Qgen1 T0 K⋅( )+⎡⎣ ⎤⎦⋅
s
K

⋅

1
ρ Cp⋅ V2⋅

ρ Cp⋅ T0 K⋅ Ta−( )⋅ Q t s⋅( )⋅ ρ Cp⋅ T1 K⋅ Ta−( )⋅ Q t s⋅( )⋅− Qgen2 T1 K⋅( )+⎡⎣ ⎤⎦⋅
s
K

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

:=

Tinit
KfromF 50( )

KfromF 50( )
⎛
⎜
⎝

⎞
⎠

K⋅:= tinit 0 s⋅:= tfin 36004⋅ s⋅:= N 1000:=

Sol rkfixed
Tinit

K
tinit

s
, 

tfin
s

, N, Slopes, ⎛⎜
⎝

⎞
⎠

:= T1 Sol 1〈 〉
:= T2 Sol 2〈 〉

:= t Sol 0〈 〉
:=

Answer :

0 100 200 300
40

60

80

100

120

140

72.5

87.5

FfromK T1( )
FfromK T2( )

67 89

t

60
 

Figure 3. Continued. 
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Verification :

The tanks reach a temperature of 130 degrees F (thermostat setting) in 89 min (50 gal tank) and 67 min (25 gal
tank). The energy stored in the water must be equal to the energy delivered by the electric heating elements:

50 gal tank: 25 gal tank:

KfromF130( ) KfromF50( )−( ) K⋅ Cp⋅ ρ⋅ 50⋅ gal 3.52 104× kJ⋅= KfromF130( ) KfromF50( )−( ) K⋅ Cp⋅ ρ⋅ 25⋅ gal 1.76 104× kJ⋅=

6600W 89⋅ min⋅ 3.52 104× kJ⋅= 4400W 67⋅ min⋅ 1.77 104
× kJ⋅=

The simulation appear to follow energy conservation since the energy stored in the tanks is equal to the energy delive
by the heaters.

The steady state part of the numerical simulation can be checked by assuming that all derivatives are zero and
solving the resulting set of algebraic equations for the steady solutions: 

( initial guess for the algebraic solver) T
60

70
⎛
⎜
⎝

⎞
⎠

:=

Given

Slopes 60 250⋅ T, ( ) 0 Setting all derivatives (slopes) to zero.

Tss FfromKFind T( )( ):= Tss
72.5

87.5
⎛
⎜
⎝

⎞
⎠

=

 

Figure 3. Concluded. 

Note the use of the Given and Find (Mathcad) commands above in order to find the steady-state solution of the 
differential equation.    

SYSTEM DYNAMICS (SD) COURSE 

Philosophy behind the System Dynamics course:  

In the System Dynamics course students learn to model and obtain the transient and frequency response of 
mechanical, hydraulic, electric, and thermal systems and interpret the results based on the system parameters. They 
learn to pose and solve state variable equations using analytical methods as well as numerical solvers and how to 
combine the state variable equations into higher-order differential equation. Verification of the homework solutions 
is based on the process learned in the Engineering Analysis course.  

 Example 4  

Figure 4 illustrates a homework set in the System Dynamics course that makes extensive use of Mathcad symbolic 
commands to simplify the algebra and obtain analytical solutions for differential equations. Given the step response 
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of a spring-damper system students are asked to find the time constant of the system and use this information along 
with the steady state information to determine the spring and damping constants for the system.   

Problem 3:

Given:

The unit step response of a first order system system is shown below (this is just a
spring connected in parallel to a damper through a massless plate and a force pulling on
the plate).  The units for the y-axis and x-axis are mm and seconds, respectively.

Find:

a) Write down the solution for the STEP response of the system in terms of the time
constant, the initial value and the steady state value. Use only symbols, not numbers
for this part. 

b) Use the equation for part (a) and the value of time when y = -1mm to find the time
constant. Repeat the same process when y= -3.3 mm and find the time constant.
Explain which of the two choices of y is less sensitive to errors when reading the graph?
Which of the two values of time constant is more reliable? Clearly explain your answer.

c) Take the derivative of the equation from part (a) and show how to find the time constant
based on the initial slope and the steady state value.  

  
d) Write down the differential equation of the system and use this equation along with the

steady state information from the plot below to find the spring constant assuming that
the step force is of magnitude 5.

 
e) Find the value of the damping b.  

 

Figure 4. Worksheet for Example 4. 
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Solution:

a) The differential equation of the a 1st order system subject to a step input is:

τ
dx t( )

dt
⋅ x t( )+ xss Φ t( )⋅

The Laplace transform of this equation is:

τ s X s( )⋅ x 0( )−( )⋅ X s( )+
xss
s

rearranging,

τ s2⋅ X s( )⋅ s X s( )⋅+ τ s⋅ x 0( )⋅ xss+

Solving for X(s) and applying partial fraction expansion:

X s( )
τ s⋅ x 0( )⋅ xss+

s τ s⋅ 1+( )
A
s

B
τ s⋅ 1+

+

Solving for A and B:

A
τ s⋅ x 0( )⋅ xss+( )

s τ s⋅ 1+( )⋅
s⋅ substitute s 0, A xss→

B
τ s⋅ x 0( )⋅ xss+( )

s τ s⋅ 1+( )⋅
τ s⋅ 1+( )⋅ substitute s

1
τ

−, B τ x 0( )⋅ τ xss⋅−→

So X s( )
xss
s

τ x 0( ) xss−( )
τ s⋅ 1+

+
xss
s

x 0( ) xss−

s
1
τ

+

+

Applying the inverse Laplace Transform: x t( ) xss x 0( ) xss−( ) e

t−

τ
⋅+

 

Figure 4. Continued. 
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b) Using the Mathcad Trace tool, we find t=0.555s for y= -1.011mm, x ss= -3.5mm, and
x(0)=2mm.

Substituting these values in the equation of part a) gives:

τ 1 1.011− mm⋅ 3.5− mm⋅ 2 3.5+( ) mm⋅ e

0.56− s⋅

τ 1
⋅+

solve τ 1, 

float 3, 
0.706 s⋅→:=

τ 1 0.706s=

Using the Mathcad Trace  tool, we find t=2.355s  for y= -3.3098mm.

Putting these values in the equation of part a) gives:

τ 2 3.3098− mm⋅ 3.5− mm⋅ 2 3.5+( ) mm⋅ e

2.36− s

τ 2
⋅+

solve τ 2, 

float 3, 
0.701 s⋅→:= τ 2 0.701s=

The first choice using the value of time when y=-1mm is the less sensitive to errors when
reading the graph because around y= -1mm the slope of the curve is higher so it is
easier to determine the corresponding time value. Thus it is the first value of the time
constant who is the more reliable since it is calculated with the values of t and y that are
the less sensitive to errors.

c) The derivative of the equation from part a) is:

dx t( )
dt

x 0( ) xss−( )−

τ
e

t−

τ
⋅

substituting t=0:

dx 0( )
dt

xss x 0( )−

τ
e0

⋅
xss x 0( )−

τ

solving fot τ τ
xss x 0( )−

dx 0( )

dt  

Figure 4. Continued. 
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d) The differential equation of the system, assuming that the step force is magnitude
5N, is:

b
dx t( )

dt
⋅ k x t( )⋅+ f t( ) 5− N

At steady state x = x ss and the derivative term dx(t)/dt is zero. This yields

xss 3.5− mm:= k xss⋅ 5− N or k
5− N

xss
:= k 1.429

N
mm

=

e) Since τ
b
k

the damping coefficient b is: b τ1 k⋅:= b 1.009
N

mm

s

=

Verification:

The plot below shows that the results from parts a) through e) are consistent because they
reproduce the plot given.

x0 2 mm⋅:= τ
b
k

:=

x t( ) xss x0 xss−( ) e

t− s⋅

τ 1
⋅+:= x' t( )

t
x t( )d

d
:= x' 0( ) 7.79− 10 3−

× m=

 

Figure 4. Continued. 
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
4−

3−

2−

1−

0

1

2

3

3.5−

x t( )

mm

x' 0( ) t⋅ x0+

mm

τ

s

t t, 

The blue straight line intersects the steady state line at a time equal to τ. This verifies
the equation from part (c) which can be written as:

xss
dx 0( )

dt
τ⋅ x 0( )+ or x t( ) x' 0( ) t⋅ x0+ at time t τ

 

Figure 4. Concluded. 

ENERGY SYSTEMS DESIGN (ESD) COURSE 

Philosophy behind the Energy Systems Design course 

In the Energy Systems Design course students learn to analyze and design energy systems components (series and 
parallel piping systems, piping networks, and heat exchangers), to select and confirm the appropriateness of pumps, 
and to model and understand the operation of energy systems.  The evolution of the Energy Systems Design course 
was delineated in Hodge (1998).  Hodge and Taylor (1999) is a textbook based on the materials covered in the 
course.  Example 4 was taken from a typical homework assignment in this course. 

Example 5 

A system to pump oil between two reservoirs is illustrated in Figure 5.  The pipe, which is 300 ft long, is made of 
commercial steel and is to handle 0.4 cfs.  The oil has a density of 56.1lbm/ft3 and a viscosity of 0.00576 lbm/ft-sec.  
The pump/motor efficiency is 67 percent.  Electricity costs $0.05 per kWh, and the demand charge is $10.00 per kW 
per month.  As a function of diameter, determine the power required to pump the oil from the lower reservoir to the 
upper reservoir.  Select a diameter, and defend your diameter selection. 

A schematic of the system is presented in Figure 5.   
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Figure 5.  Oil Pumping System Schematic. 

The energy equation for the system can be written as 

g
g

W
g

VKKK
g

V
D
LfZ

g
VP

Z
g

VP c
sexitelbowentB

BB
A

AA −++++++=++
2

)2(
222

2222

γγ
           (1) 

The minor losses are the entrance, the elbows, and the exit.  Since A and B are located at free surfaces of reservoirs 
open to the atmosphere, PA = PB and VA = VB = 0.  The energy equation thus reduces to the form: 

g
VKKK

D
LfZZW exitelbowentABs 2

)2(
2

++++−=                (2) 

The Mathcad worksheet containing the problem solution is included as Figure 6.  The power input to the pump is 
required as a function of the pipe diameter. The pipe diameter will be varied, and the pump increase in head and the 
power required calculated for each diameter.  Diameters from 1.5 to 9 inches, in increments of 0.5 inches, are 
prescribed by Di = (1 + 0.5·i), where i is the Mathcad range variable.   
 
The calculation of the increase in head of the pump, Ws, required for a given pipe diameter is a Category I problem.  
The pump increase in head, Ws, cab be calculated directly for each pipe diameter.  The power required by the pump 
is 

η
ρQW

PowerR s=                       (3) 

Graphical representations of variables of interest are provided in the worksheet.  For the relatively small diameter 
range considered, the power required by the pump changes by two orders of magnitude (from 406 hp to 5.9 hp).  
The figures provide graphic evidence of the almost D5 dependence that power required and pressure drop have on 
diameter when major losses are dominant in piping systems.  An examination of the power required graph provides 
some insight into diameter selection.  The power required has a diminishing returns relationship as the diameter is 
increased.   At about D = 3 inches (the “knee” in the curve) further increases in diameter yield little decreases in 
either the pump power required or the pump increase in head.  Thus, a cursory examination eliminates diameters 
near 1 inch (too much power) or near 6 inches (too large a pipe) and indicates a diameter of 3 inches to be a rational 
choice. 

15 ft L, D, ε 

Q A 

B 
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Economic metrics, such as the minimum present worth, are often used to determine the desired configuration of a 
system.  The present worth depends on the system operating costs as well as the initial system costs.  Since the hours 
per week of use is not provided, a two-shift operation (80 hours/week) is assumed.  Additionally, the expected 
lifetime of the system is taken as 10 years and an interest rate of 7 percent is reasonable.  The total system operating 
costs consist of the energy cost and the demand cost.    The total system operating costs per year as a function of 
pipe diameter is depicted in the worksheet.  For very large pipe diameters, the yearly operating costs asymptotically 
approach a small number ($250), depending on the pipe diameter. 
 
The initial system costs are composed of the pipe purchase/installation cost and the pump cost.   Pipe and pump 
costs are taken from Hodge and Taylor (1999).   The total initial cost of the system is the sum of the pipe and pump 
costs.  The initial costs of the system are dependent only on the pipe diameter and not on the hours per week of 
operation.  The initial system cost as a function of pipe diameter is presented in the worksheet.  The system initial 
costs are dependent mostly on the pipe diameter and length since the pump cost is very small compared to the pipe 
cost except at the smaller diameters. 
 
With the operating costs per year and the total initial costs known, the present worth for a n-year operating period is 
 

CostInitCostTotesentW n

n

+
+⋅

−+
⋅=

int)1(int
1int)1(Pr                (4) 

where int is the interest rate (7 percent) and n (10 years) is the number of years considered.  The present worth for 
the system as functions of pipe diameter is shown in the worksheet.  A minimum present worth exists since 
operating costs decrease as diameter increases and total initial costs increase as diameter increases.  The minimum 
present worth corresponds to a pipe diameter of 3.5 inches.  Hence, the cursory indication of about 3 inches from 
power required is amazingly accurate. 

The recommended pipe diameter is 3.5 inches for this system.  The results of both the simple analysis examining 
only the behavior of the increase in power (or pump increase in pressure) and the more complex present worth 
economic analysis are essentially the same.  

Verification of the solution is provided by observing that the value of the increase in head of the pump, Ws, 
asymptotically approaches the elevation difference of 15 feet.  This is appropriate as frictional losses decrease as D5 
and for large pipe diameters become very small.  Consider the fluid velocity as a function of pipe diameter.  At a 
diameter of 3 inches, the fluid velocity is about 8 ft/sec, and at a pipe diameter of 3.5 inches, the fluid velocity is 
near 6 ft/sec.  A general rule of thumb in piping systems is that economic constraints dictate that the velocity should 
not exceed 10 ft/sec.  This solution is very congruent with the rule of thumb thus providing additional verification 
for the solution. 
 
 

 

 

 

 

 

 

 

 



2009 ASEE Southeast Section Conference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Worksheet for Example 5. 

ORIGIN 1≡  Set origin for counters to 1 from the default value of 0. 

Input the pipe geometry: 

      Diameter in feet                                            Length in feet               Roughness in feet: 

i 1 16..:=     L 300 ft⋅:=   ε 0.00015 ft⋅:=  

Di 1 0.5 i⋅+( ) in⋅:=  

Input the system boundary (initial and end) conditions: 

Pressures in psi:  Elevations in feet: 

Pa

Pb

⎛
⎜
⎝

⎞

⎠

0

0
⎛
⎜
⎝

⎞
⎠

lbf

in2
⋅:=

  

Za

Zb

⎛
⎜
⎝

⎞

⎠

0

15.0
⎛
⎜
⎝

⎞
⎠

ft⋅:=  

Input the loss coefficients: 

       K factor                                       Equivalent length 

K 1.5:=          C 60:=  

Input the fluid properties: 

    Density in lbm/ft3   Viscosity in lbm/ft-s 

ρ 56.1
lb

ft3
⋅:=

   
µ 0.00576

lb
ft sec⋅

⋅:=  

Input the flow rate in cfs: Q 0.4
ft3

sec
⋅:=  

Define constants and adjust units for consistency: g 32.174
ft

sec2
⋅:=

 

 
gc 32.174

ft lb⋅

lbf sec2
⋅

⋅:=  

Define the functions for Reynolds number, fully-rough friction factor, and friction factor: 

Re q D,( )
4 ρ⋅ q⋅
π D⋅ µ⋅

:=
 f q D, ε,( )

0.3086

log
6.9

Re q D,( )
ε

3.7 D⋅
⎛
⎜
⎝

⎞
⎠

1.11
+

⎡
⎢
⎣

⎤
⎥
⎦

2
Re q D,( ) 2300>if

64
Re q D,( )

otherwise

:=
 

fT D ε,( )
0.3086

log
ε

3.7 D⋅
⎛
⎜
⎝

⎞
⎠

1.11⎡
⎢
⎣

⎤
⎥
⎦

2
:=  
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Figure 6. Continued. 

The generalized energy equation is: 

Wsi

Pb Pa−

ρ
Zb Za−( ) g

gc
⋅+

8

π
2

Q2

gc Di( )4
⋅

⋅ f Q Di, ε,( ) L
Di

⋅ K+ C fT Di ε,( )⋅+
⎛
⎜
⎝

⎞
⎠

⋅+:=  

Power imparted to fluid: Power Ws Q⋅ ρ⋅:=  Pump mechanical efficiency. η 0.67:=  

Power required: PowerR
Power

η
:=  

0 2 4 6 8 10
0

25

50

75

100

125

150

175

200

Wsi

ft
lbf

lb
⋅

Di

in

0 2 4 6 8 10
0

10

20

30

40

50

PowerRi

kW

Di

in

 

Consider the cost of running the pump for 80 hours per week (two shifts). 

wk 7 day⋅:=  month 4.33 wk⋅:=  HW 80
hr
wk

⋅:=  

Energy Costs: 

The total electricity cost is composed of an energy cost (kWh) and a demand cost (kW). 

The energy cost is the product of the kWh used per year and the kWh rate: 

CostE PowerR HW⋅ 52⋅ wk⋅
0.05

kW hr⋅
⋅:=  

The demand cost is the product of the demand (kW) per billing period times the number of billing 
periods in a year (usually 12) times the demand rate per billing period. 

CostD PowerR 12⋅ month⋅
10.0

kW month⋅
⋅:=  

The total electricity cost is the sum. 

CTot CostE CostD+:=  
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Figure 6. Continued. 

0 2 4 6 8 10
0

5000

1 .104

1.5 .104

2 .104

CTot

D

in  

Initial Costs: 

The initial costs are composed of the pipe cost (purchase and installation) and the pump cost (purchase 
and installation). 

Pipe  pumpcosts (estimated using information in Hodge and Taylor, 1999). 

CostP
L
ft

0.4
D
in

⎛
⎜
⎝

⎞
⎠

2
⋅ 1.831+ 8.178

D
in

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅:=
 

CostPump 6000
Power
130 hp⋅

⎛
⎜
⎝

⎞
⎠

0.5
⋅:=  

The total cost is the sum of the pipe and pump costs. 

CostInit CostP CostPump+:=  

0 2 4 6 8 10
0

1 .104

2 .104

3 .104

4 .104

CostInit

D

in
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Figure 6. Concluded. 

Consider the present worth for 10-years of operation at 7 percent. 

n 10:=  Number of years considered  int 0.07:=       Interest rate 

PresW CTot
1 int+( )n 1−

int 1 int+( )n⋅
⋅ CostInit+:=

 

Present worth for n years at int interest rate 

0 1 2 3 4 5 6 7 8 9
0

2.5 .104

5 .104

7.5 .104

1 .105

1.25 .105

1.5 .105

PresW

D

in  

Fluid velocity calculation. Area 0.25 π⋅ D2
⋅:=  V

Q
Area

:=  
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D
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ASSESSMENT AND CONCLUSIONS 

The purpose of this paper is to discuss a process for inculcating a systematic and practical problem solving approach 
in engineering students.  In all the examples explored in this paper, the same process is used.  The treatments of all 
the example problems are identical and emphasize the three steps: (1) formulate a well-posed system of equations, 
(2) utilize user-friendly mathematical computer solvers  to do the “arithmetic,” and (3) verify the results.  In this 
paper, the arithmetic has been accomplished by using Mathcad.  Other computational software systems 
(Mathematics, Matlab,….) offer the same capability, albeit in different formats, but with the same results.   

Anecdotally, students appreciate the attention to problem solution using the three-step unified approach.  The use of 
Mathcad relieves the student from assimilating different numerical techniques (“procedures”) to solve a system of 
equations.  The net result is that more involved and more realistic problems can be assigned.  With less time spent 
on arithmetic, more time is available for students to engage is higher-level synthesis and understanding. 

Examples illustrating a unified approach to solutions of engineering problems in three required courses in ME at 
MSU have been presented and discussed.  The approach offers advantages in providing students with capability to 
solve more “real world” problems while concentrating on the engineering aspects of the problems. 
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