
An Introduction to Fuzzy Logic Applications for
Robot Motion Planning

Mr. Paul Yanik1, Dr. George Ford2, Dr.Brian Howell3

Abstract - This paper considers a fuzzy logic application for navigation and obstacle avoidance of a robotic
vehicle in a 2D environment. An algorithm for 2D navigation was implemented in a simulation, and its effectiveness
in various obstacle fields is discussed. Fuzzy algorithms have proven effective in achieving performance objectives
for attainment of goal configurations and real time autonomous operation as exemplified in an environment which
was simulated using National Instruments LabVIEW version 8.2 software.

Keywords: fuzzy logic applications, robot motion planning, trajectory planning, fuzzy logic

INTRODUCTION

In the field of mobile robotics, the goal of autonomous robot operation is a topic of considerable research.
Robots may frequently find themselves in environments for which a reliable map of obstacles and terrain is
unavailable due to the dynamics of the environment, imprecise sensory data or simply a lack of prior knowledge of
the environment [4]. In such situations, it may be necessary for a robot to recalculate its trajectory online. While a
globally computed motion plan for the robot in terms of gross motions over longer distances may remain valid, a
response to a moving or unforeseen obstacle may force the robot to alter its path amid local obstacles while en route
from the initial configuration to the final goal. As a possible means to meet such requirements, fuzzy logic based
algorithms have found application in the area of robot motion planning because of their inherent ability to deal with
imprecise inputs and their low computational complexity.

Fuzzy algorithms execute in three major stages: fuzzification, inference, and defuzzification. In the
fuzzification stage, real world sensory inputs in a given universe of discourse are characterized on the closed interval
[0, 1] according to their levels of membership in fuzzy sets. These sets are given names which express qualities of
the input variable using easily understood linguistic terms. A membership function maps the value of the input
variable to a degree of membership in each of the fuzzy sets. The fuzzified value then, represents the level of truth
of each of these linguistic terms for a given input. For example, the angular direction of a near obstacle to a mobile
robot might have a universe of discourse of -90° to 90° where 0° denotes the current heading of the robot. Figure 1
below shows a possible definition of fuzzy sets for how a “crisp” (real world) input angle θ might linguistically
reflect the level to which the obstacle is left, in front, or right of the vehicle. Here, an angle of 30° represents a
direction having fuzzified degrees membership in the set of angles to the right (“rightness”) of �R and frontness of
�F. In this manner, fuzzy sets are capable of handling imprecise inputs. Should an input angle be sensed
inaccurately, its levels of truth according to the linguistic terms may vary while its relative membership levels in the
sets remain qualitatively the same. Sets are often defined to have the piecewise-linear shape shown so as to reduce
the computational complexity of determining set membership [3]. Other shapes include triangular, square,
singleton, Gaussian or asymmetric types. Other variables commonly of interest in robotic applications include
distance to an obstacle and speed of the robot with respect to an obstacle.

1 Western Carolina University, Belk 161, Cullowhee, NC 28723. pyanik@wcu.edu
2 Western Carolina University, Belk 161, Cullowhee, NC 28723. gford@wcu.edu
3 Western Carolina University, Belk 161, Cullowhee, NC 28723. bhowell@wcu.edu

2009 ASEE Southeast Section Conference

Figure 1 - Example fuzzy set definition with a fuzzified input

The inference stage applies the fuzzified input value to a rule base to determine a [still fuzzy] command output.

The rule base contains the operational intelligence of the system. A generalized format for a rule is:

 If <predicate conditions> Then <consequence> (1)

Where predicate conditions are combinations of each input variable and their relative levels of linguistic truth, and
consequence is a fuzzified output command. An example rule which might apply to a mobile robot is given below.

 If ObstacleAngle is RIGHT and Distance is NEAR Then
 SteeringDirection is LEFT_BIG (2)

A rule base must cover all permutations of input variables having degrees of truth in all possible linguistic terms.
Hence the total number of rules N which must be represented in a rule base either by explicit statement or default
action is given by in the relation below.

 (3)
1

m

i
i

N
=

=∏ p

where m is the number of input variables (angle, speed, distance, etc.), and pi is the number of linguistic terms for
the ith variable [5]. Multiple rules in the rule base may have their predicate conditions satisfied to greater or lesser
degrees by fuzzified input variables. Such rules are said to have fired. In fact, where fuzzy sets are defined to
overlap on their universe of discourse, at least two rules are guaranteed to fire for any input value. Each fired rule,
then, possesses an adaptability to the associated output command through the fuzzy operation (AND, OR, sum,
bounded sum, product, etc.) stated by the rule [2]. Commonly, the AND (min) operation is used as shown in the
example above. In such a case, the minimum fuzzified value of the predicate conditions becomes the adaptability of
that rule to its consequence.

The defuzzification stage extracts a crisp command output from inferences drawn from fired rules. Techniques
for defuzzification generally involve some analysis of the regions created by cutting the output fuzzy sets using
adaptabilities from each of fired element in the rule base. An example of such a region is given by Figure 2.
Common methods for this operation include taking the centroid of largest area (CLA), and mean of maximum value
(MOM). Numerous other approaches exist which are not considered here.

2

Figure 2 – Example of defuzzification (by MOM method).

This paper discusses an application of fuzzy logic based algorithms to robot navigation control in a 2D

environment. The first parts of the paper discusses theory related to 2D robot motion control. The second part
describes the simulation of a 2D navigation algorithm which was implemented for the purpose of examining the
practical subtleties of fuzzy controller design.

MOBILE ROBOT NAVIGATION IN A 2D ENVIRONMENT

Yang, Maollem and Patel [3] proposed an augmentation to previous applications of fuzzy logic to 2D robot
motion planning. All figures, equations and algorithm details in this section are attributed to this work unless
otherwise stated. They cited previous research in which the use of fuzzy methods was chiefly focused on short
range reactive control. That is, robots were navigated by simply reacting to near obstacles as they were detected
while taking into account a global goal direction. While such algorithms have frequently proven effective, they
often encounter situations in which the goal configuration becomes unreachable by the robot despite the availability
of a traversable path. More commonly, reactive fuzzy navigation may suffer from “shortsighted” behavior wherein
the angle to the final goal influences all steering decisions in unison with local sensor data. Situations then arise in
which short range sensors may not detect obstacles between the current configuration of the robot and the goal. In
these cases, a path may be selected that is less desirable than others available. Figure 3 compares the results of
shortsighted behavior to an end-to-end path plan. Through purely reactive fuzzy control using short-range sensors,
the robot attempts to move in the direction of the goal at point B when obstacle 2 is still out of its perceptive range.
The undesirable path ABCDEG is the result. Clearly, through the benefit of long-range planning, path AJKG would
be seen as more desirable.

Obstacle 1

Obstacle 2

Goal Position
(G)

A

B

C

D

E

J

K

Figure 3 – Shortsighted goal-seeking versus long-range path planning.

3

Yang, et al [3] formulated an approach which attempts to overcome the past tendency of fuzzy algorithms to

such behaviors using a “layered, goal-oriented” navigation strategy. Two layers were proposed. These can be
qualitatively separated into long-range versus short-range information assessment. The first layer uses long-range
sensor data and the global goal angle to determine a direction that is both traversable (free of obstacles) and
desirable (in the direction of the goal). The qualities of directional traversability and desirability are represented as
fuzzy sets and are fused to produce a way-point along the path to the goal. A high-level block diagram of the first
layer of the planner is given by Figure 4.

Figure 4 – Block diagram for long-range way-point calculation (layer 1).

Sensors are positioned at intervals around the perimeter the robot body and are activated upon detection of

far away obstacles. The signal strength of each sensor indicates the relative nearness of an obstacle. This strength is
fuzzified through a collection of trapezoidal fuzzy sets for angles of -180° (left) to +180° (right). Where adjacent
sensors detect an obstacle with strengths of �1 and �2, an untraversable area τi is the composed fuzzy set found by
the bounded sum of the two strengths as given by the equation below.

 1 2 1 2min{1, }iτ μ μ μ μ= ⊕ = + (4)

An example of a composed fuzzy set for untraversability is given by Figure 5.

180-180

1

2

-90 900

i

Figure 5 – Composed fuzzy set for untraversability in layer 1.

The traversable area � is given by the complements of all τi as defined by the equation below.

1 1
{ } 1 max{ }

n n

ii i
not iτ τ

= =
Γ = ∨ = − (5)

4

where n is the number of activated sensors [3]. The desirability �of a potential steering direction is a fuzzified
representation of the goal angle φ with respect to the current heading of the robot. It is determined by a composed
set from the relative strengths (�1 and �2) of adjacent triangular fuzzy sets at 90° intervals on the same universe of
discourse as traversability. It is defined by the equation below.

 1 2 1 2{ , }sumμ μ μΩ = ∨ = μ (6)

A composed fuzzy set for desirability is depicted in Figure 6.

180-180

1

2

-90 900

Figure 6 – Composed fuzzy set for desirability (goal-seeking) in layer 1.

The direction to the way point is the fuzzy set
~
γ represented by the intersection of composed sets for traversability

and desirability.

 (7)
~

min{ , }γ = Γ ∧Ω = Γ Ω

Over the range of possible angles, the intersection set will have multiple peaks. Each peak will be separated from
others by an interval of zero membership since the sets for untraversability have crossing point values greater than
0.5. This intersection of composed sets is defuzzified by taking the mean of maximum of the largest area (MOMLA)
to generate a crisp angle γ which is the direction to the way-point. This defuzzification technique is a combination
of the mean of maximum (MOM) and centroid of largest area (CLA) techniques. It was shown to offer an improved
outcome when finding the crisp target angle over the CLA method that is often used elsewhere. The position of the
way-point and its orientation angle can then be found by

 cos()w i ix x ρ θ γ= + − (8)

 sin()w i iy y ρ θ γ= + − (9)

 w iθ θ γ= − (10)

where (xi, yi, θi) is the initial configuration of the robot, (xw, yw, θw) is the configuration of the way-point, and ρ is
the distance from the robot’s current position to the way-point and

 L Rρ δ ρ= + ≤ (11)

where L is the distance between the robot and the obstacle closest to the way-point, � is the size of the robot and R
is the effective radius of the sensors.

The second layer takes the way-point produced by the first layer as a subgoal. This layer produces a local
trajectory which guides the robot toward the way-point while avoiding collisions with obstacles. Here, a ring of

5

short-range sensors is used to implement a reactive navigation algorithm wherein local direction and speed
commands are generated in response to near obstacles as the robot seeks the way-point. A high-level block diagram
of the second layer of the planner is given by Figure 7.

Figure 7 – Block diagram for short-range steering command generation (layer 2).

In a manner analogous to the first layer algorithm, the way-point is used as a desired direction for the robot

while sensor inputs are used to infer a direction that allows the robot to avoid obstacles. The simultaneous
objectives of subgoal seeking and obstacle avoidance are combined to produce a safe heading for the robot. The
authors note that in seeking the subgoal, it is acceptable for the robot to nearly touch obstacles. Hence, only a single
threshold is needed for determining closeness to them. This gives rise to a rule base for the second layer of the
general form shown below.

 If sensor S is fired, Then
 the direction indicated by S becomes fully disallowed. (12)

Here, a fired sensor denotes one in which the sensor reading for a near obstacle is above some threshold (which
may be set to a high level). By fully disallowing the direction associated with a fired sensor, the subgoal is pursued
as aggressively as possible. The subgoal need not be attained precisely, however, since it is not the global objective.
Further, the subgoal may become unreachable by dynamics of the environment or the robot may become lost or
stuck while seeking the subgoal. In such situations, the second layer may need to abandon the subgoal and pursue a
new one. This judgment can be made by assigning a time limit T for the robot to reach the way-point. The time
limit can be found as

 bv
T ρ
= (13)

where vb is the typical speed of the robot in an unobstructed environment. The second layer of the algorithm can
accept a new way-point from the first layer whenever the time limit expires.

A final feature of the Yang’s, et al [3] algorithm was the implementation of a deadlock handling mechanism.
Should the robot enter a situation in which obstacles block a direct path to the final goal and such obstacles are too
large for long-range sensors to plan a path around, the fuzzy algorithm presented thus far could result in oscillatory
motion that does not result in progress toward the goal. In such situations, the robot needs a strategy breaking the
cycle of unproductive decisions. Typically, this is handled with a wall (or contour) following behavior until a safe
trajectory is discovered. Instead, the authors temporarily replace the global goal angle with a new target angle. This
allows the robot to make reasonable path alterations based solely on traversability when encountering convex

6

obstacles (even though it may move in a direction away from the global goal) in order to extricate itself from a
deadlock scenario.

The authors implemented their algorithm experimentally on a Koala (6-wheeled) robot equipped a ring of
sixteen infrared sensors. The sensors had a range of 5-20 cm and a field of perception of 10°. The robot was also
equipped with wheel encoders. The infrared sensors were used as both long- and short-range detectors by setting
their thresholds accordingly.

Experimental results were divided into those for static versus dynamic environments. In a static environment,
the algorithm determined only reachable way-points. The arrangement of the way-points resembles planning by a
visibility graph approach. Graphs of sensor readings show that the readings were generally low except when a way-
point was close to the vertex of an obstacle. This behavior is interpreted as the algorithm’s ability to avoid obstacles
before coming close to them. Further, this behavior represents avoidance of the shortsighted behavior problem
associated with a purely reactive fuzzy controller.

The algorithm’s behavior in a dynamic environment involved movement of obstacles during the robot’s
passage so as to render some way-points unreachable. In these situations, the robot was observed to abandon such
way-points upon expiration of its deadline and to pursue new way-points until the final goal was attained.

Finally, in order to demonstrate the effectiveness of the layered algorithm over earlier methods, the Koala
robot was also programmed (separately) with only reactive direction-based and speed-based fuzzy algorithms.
Compared to these algorithms, the layered approach produced improvements in navigation time of 27.6% and 16.3%
respectively. Further, it is seen through the graphed data presented in the article that the layered approach produced
a smoother trajectory and generally avoided obstacles before coming in close proximity to them. This behavior
allowed wheel velocities to remain roughly constant with respect to one another which resulted in less directional
oscillation.

METHODOLOGY

As a platform to facilitate understanding of the subtleties of fuzzy algorithm implementation, a simulated
environment which emulates the 2D layered approach of Yang, et al. [3] was created. The environment was
implemented using National Instruments LabVIEW 8.2. The LabVIEW PID Controller Toolkit was employed to
implement the core fuzzy controller. The environment is a Cartesian plane which displays the square region
bounded by opposite vertices (0, 0) and (100, 100). Up to three triangular obstacles can be added dynamically. A
robot modeled as a point navigates autonomously under fuzzy control from a programmable starting point to a goal
point during run time. Due to time constraints of the project and limitations associated with the fuzzy logic
controller, the calculation of way-points in the first layer of the algorithm discussed in [3] was improvised to show
probable results. The second layer of the algorithm which implements short-range obstacle avoidance and subgoal
seeking was fully implemented. Due to the graphical nature of the LabVIEW source code, images were deemed to
expansive to be discernable in this document and have been omitted.

Fuzzy sets were defined in typical trapezoidal and triangular shapes. Set definitions are shown in Error!
Reference source not found.. Input variables were Obstacle Angle and Goal Angle. The output Navigation Angle
represents a correction to the current heading angle. It was observed that finer granularity in the fuzzy set definition
(i.e. more linguistic terms) offered less dramatic command changes to the robot. Further, trapezoidal sets appear to
facilitate smoother directional changes since a greater span of the universe of discourse is devoted to full set
membership for each term. Using triangular sets over trapezoidal sets for a given input variable effected the
behavior of the robot adversely even to the point of collision with obstacles en route to achieving the goal. A further
subtlety can be seen where both obstacles and goal are directly in front of the robot. In such situations, a bias must
be placed in the rule base toward navigation either to the right or left. Hence, navigation will appear to have a
preference in the direction chosen by the designer. The rule base developed for this simulation environment is given
in Error! Reference source not found..

7

For initial testing, the Goal Angle represented a global goal. In such cases, the robot exhibits the shortsighted
behavior discussed in Section 0. An example simulation depicting this behavior is given by Figure 8. The robot
clears the lower obstacle and navigates directly toward the goal since the larger obstacle is still out of sensory range.
Then, upon detection of the larger obstacle, the local trajectory prescribed by the rule base places the robot on a path
that takes it around the upper obstacle and further from the goal before it can once again move in the desired
direction.

Figure 8 – Simulation results showing shortsighted navigation behavior.

With the addition of way-points, each way-point can be seen acting as a subgoal directing the robot toward the
global goal. Each way-point is achieved in turn. The overall effect is similar to the vision graph approach in
roadmap motion planning. The long-range sensors on the robot tend to seek the nearest vertices of obstacles since
they represent the most traversable and desirable path where the vertex is approximately in line with the global goal.
Figure 9 below shows the same obstacle field as in the previous figure with the path governed by generated way-
points.

Figure 9 – Simulation results with way-points added for long-range navigation.

 One of the stated benefits of fuzzy logic based control is real time trajectory alteration due to the low
computational complexity of the underlying algorithm. Figure 10 below shows the ability of the algorithm to react
to unforeseen obstacles. The small obstacle depicted in the figure is inserted dynamically during run time so as to
provide an obstruction directly in line with the calculated way-point. The figure shows that the algorithm safely
navigated around the obstacle and went on to the global goal.

8

Figure 10 – Robot behavior with way-point obstructed by an unforeseen obstacle.

 A final simulation scenario was conducted which shows the behavior of the robot in a deadlock situation.
When the layer 1 goals of traversability and desirability denote opposite behaviors, an oscillatory motion can result.
This is a common weakness for fuzzy logic based algorithms. As previously discussed, Yang, et al. [3] propose a
deadline mechanism which forces the robot to choose a new subgoal upon expiration of a specified time period.
Figure 11 shows a dynamically inserted obstacle (the small triangle) which renders a way-point unreachable. With
the addition of this obstacle, the direction to the subgoal lies in direct opposition to the traversable directions
available to the robot. A period of oscillatory motion is induced. However, after expiration of the deadline (70
system clock periods in this case), the robot abandons the subgoal and pursues a new subgoal based solely on
traversability.

Figure 11 – Oscillatory (deadlock) behavior followed by expiration of deadline and redirection.

 Development of this simplified fuzzy control environment represented a significant learning experience.
Many hurdles were encountered during the design and programming phases. Even with the use of an established
controller toolkit, it quickly became clear that creating an effective fuzzy set and rule base combination having
logical consistency across all behaviors is challenging. The difficulty of this task would be amplified when one
considers the increased complexity of adding more variables, each with its own terms and fuzzy set definitions.

CONCLUSION

The use of fuzzy logic for local navigation of robots is a much discussed topic in literature. Various
implementations have been shown to be effective and efficient. The ability of fuzzy techniques to deal with

9

10

imprecise data allows for smooth trajectory execution while their low computational complexity allows them to
react quickly to dynamic environments without the need to alter the robot’s end-to-end path.

Because algorithms based on fuzzy logic depend on sensory data to make navigational corrections, they are
essentially reactive in nature. This quality can elicit suboptimal behaviors including shortsightedness and the local
minima problem. A knowledge of longer range obstacles as from long-range sensory instruments or conventional
model-based planning algorithms could allow the reactive behavior of a fuzzy controller to make quick trajectory
adjustments while still approximating the most preferred path.

The implementation of a fuzzy controller as discussed here required an iterative approach. The shapes of fuzzy
sets and consequences of rules can have a dramatic effect on the overall effectiveness of the controller. Further,
when the number of fuzzy variables and/or their linguistic terms increases, the number of rules which must be
covered by the controller may become large and unwieldy. Logical inconsistencies across the range of robot
behaviors may be accidentally implemented by the designer. Hence, the combination of rule construction and rule
count presents a challenge to the formulation of uniform and desired outcomes. Extensive tweaking of both fuzzy
sets and rules may be necessary. Future work would include the study of methods to automate the layout of fuzzy
sets and the rule base. There is also a substantial body of literature which discusses the use of genetic algorithms to
tailor the shapes of fuzzy sets. Neural networks have also been used to provide learned weights to fuzzified data.
Both of these approaches make use of training data to produce a more effective fuzzy control platform.

REFERENCES

[1] D. Shi, E.G. Collins, and D. Dunlap, “Robot Navigation in Cluttered 3D Environments Using Preference-
Based Fuzzy Behaviors,” IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics,
vol. 37, no. 6, pp. 1486-1499, Dec. 2007.

[2] K. Tanaka, An Introduction to Fuzzy Logic for Practical Applications, New York, NY, Springer-Verlag,
1997.

[3] X. Yang, M. Maollem and R.V. Patel, “A Layered Goal-Oriented Planning Strategy for Mobile Robot
Navigation,” IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 35, no. 6,
pp. 1214-1224, Dec. 2005.

[4] P.G. Zavlangas and S.G. Tzafestas, “Industrial Robot Navigation and Obstacle Avoidance Employing
Fuzzy Logic,” Journal of Intelligent and Robotic Systems, vol. 27, pp. 85-97, 2000.

[5] LabVIEW PID Controller Toolkit User Manual, National Instruments Corporation, Austin, TX, 2006.

	Abstract - This paper considers a fuzzy logic application for navigation and obstacle avoidance of a robotic vehicle in a 2D environment. An algorithm for 2D navigation was implemented in a simulation, and its effectiveness in various obstacle fields is discussed. Fuzzy algorithms have proven effective in achieving performance objectives for attainment of goal configurations and real time autonomous operation as exemplified in an environment which was simulated using National Instruments LabVIEW version 8.2 software.
	INTRODUCTION
	MOBILE ROBOT NAVIGATION IN A 2D ENVIRONMENT
	METHODOLOGY
	CONCLUSION
	REFERENCES

