
2007 ASEE Southeast Section Conference

Model-Based Software Design Practice
Barbara Bernal Thomas1

Abstract – Current software engineering practices involve modeling as a key activity in the building of efficient and
usable software systems. Software development’s initial phases include the creation of a complete model of the user
group, followed by comprehensive formulation of the task models which comprise the system. These are integrated
into the conceptual model, which is evaluated and validated with usability inspection methods. The relationship
between building conceptual models and developing systems from these solutions provides a sound basis for
industrial-strength software engineering called model-based software engineering (MBSE). This paper illustrates the
process of two fundamental, complementary sets of activities from domain engineering and application engineering.
Discussions regarding application of traditional engineering principles to known solutions will be compared to the
framework of model-based software engineering. A global view of the duality of domain and application engineering
is provided with the relevant aspects of the modeling activities.

Keywords: Software Engineering, Software Design, Software Development, Model Based, MBSE.

INTRODUCTION

The life of a software system from its conception to its implementation is governed by well defined processes which
impose consistency, structure, and control. Process standards provide guidelines for teams to develop software and
may be adapted and tailored to fit an organization’s particular needs. Using various process standards allows an
organization to establish its own procedures, methods, tools, and environment for the software development project.
The purpose of this paper is to describe a well-defined methodology for the development of software using a model-
based software engineering (MBSE) practice. The pertinent industry standards for modeling activities, modeling
languages, development methods, and deliverables from each phase of the software life cycle are focused with
modeling principles. Building the efficient and usable software products is partitioned into two parts:

1. Domain Model

2. Application Model

The domain model is decomposed into the conceptual activities related to the user and the task. The user related
activities explore and define all human, machine, and/or system interaction with the proposed software system. The
task related activities comprise the complete, unambiguous, and validated description of what the software system
will achieve. Analyzing these task related activities yield multiple models which together form the domain model for
the proposed software system. Finally, the synthesis of solutions from the domain model are proposed, investigated,
and validated to create the application model.

This practice allows software engineers to model the behavior of the users and system, design the software and
model its behavior, and then simulate the entire system model to accurately predict and optimize performance. The
system model becomes a specification from which you can automatically generate real-time software for testing,
prototyping, and embedded implementation, thus avoiding manual effort and reducing the potential for errors.

1 School of Computing & Software Engineering, Southern Polytechnic State University,
Marietta, Georgia 30060, bthomas@spsu.edu

2007 ASEE Southeast Section Conference

Teams trained in MBSE benefit from the visual, interactive environment in which to define, build, manage, and
simulate the model. The graphical, hierarchical nature of this practice lets software design teams functionally model,
accurately document, and effectively communicate their designs, reducing the risk of misinterpretation or
misunderstanding. Changes or corrections to the system requirements and specifications are easily incorporated into
the model. Figure 1 shows an overview of the approach to define models in the domain engineering which then
translates to the solutions in the application engineering. The building of the solutions has multiple testing
checkpoints as do the domain activities. Interactive feedback from users is present in both. Iteration is present
between the domain and the application activities. [Rozenblit 2]

Figure 1. Project and Engineering Activities

DOMAIN MODEL

The Domain model is first initiated with the user’s model which is a conceptual representation of the user and their
tasks. Through the creation of a user profile, the personal and educational characteristics of the user are
incorporated into the user’s model. The task characteristics of frequency, complexity, structure, decomposition, etc.
are described to the client and validated. A requirement mo deling language describes the ways in which the
application is to be used, thus developing a final conceptual representation of 1) the User’s model.[Jo 1] Several
additional models complete the Domain model activities: 2) the Analysis model describes the basic classes for the
system; 3) the Design Model portrays functional and non-functional representations 4) the Implementation model
describes the organization of the software system; and 5) the Test model consists of test components, test
procedures and test cases. These multiple models with their definitions and descriptions comprise the domain
activities and are represented in figure 2 below.

Figure 2. Domain Activities

Domain Activities

1.User’s Model

2.Analysis Model
4.Implementation Model

5.Test Model

3.Design Model

 Define Models and Validate

Prototype Solutions Evaluate Solutions

Build and Verify

Domain Activities users

Application Activities

2007 ASEE Southeast Section Conference

APPLICATION MODEL

The final construction of efficient and usable software systems occurs within the application models. These models
are iteratively derived from the multiple domain models created previously. The user’s models contribute to the
requirements phase, the analysis and design models to the design phase, implementation models to implementation
and testing models to testing. Figure 3 shows this approach beginning in the center with the domain models used as
blueprints for the development into the final solution application.

Figure 3. System Development Process

Development traditionally employs formal, analytic, top-down engineering approaches or informal, synthetic, bottom-
up designer approaches. In the formal approach, individual blocks are designed and tested within the context of the
top-level, thus, block level interfaces and functionality are both verified at the top-level. In this development flow,
there is only one test bench and the number of synthesis and simulation scripts is minimized. In the second
approach, the blocks are designed and tested individually before they are integrated together to create the top level
system. Both are based on specific development representations tailored to specific qualities and needs. Providing
opportunity for both traditions within MBSE enables dual reinforcement strategies to reach the final solution.

To better understand the use of model representation to engineer solutions a framework is developed for the
application model. The model representation is classified along three dimensions:

• the perspective (problem- or solution-oriented) of the representation,

• the granularity of the objects described, and

• the degree of formality of the representation and its language.

The model representation classification framework has guided the development of the application model for the three
main perspectives of user, tasks, and system. The framework has also been used for evaluating the proposed
application models (prototypes) to reach the final application model. Specific views are examined from problem to
solution; from high-level to low-level; from low-level to high-level; from formal to informal; and from informal to
formal.

Set-based conceptual modeling is used for domain modeling within all these perspectives. The task modeling
language is designed as a hybrid of flow-oriented process languages and traditional hierarchical sequence-oriented

Domain Models

 Requirements
& Specification

Analysis &
Design

Testing
Phase

Implementation
Phase

2007 ASEE Southeast Section Conference

task languages. Key features are tight integration with the domain modeling language, expressive and flexible
mutation and support for classifications of task structures.

An advantage of model-based software engineering is the close relation of the design to the user and task
requirements of the application. Software engineers improve efficiency with the opportunity to refine the solution
algorithms through model simulation and client evaluation of the simulations in the prototyping phase.

CONCLUSIONS

Model-based software engineering was discussed along two main divisions, the domain model with conceptual
activities, and the application model with development activities. The domain model focuses on articulating
knowledge, problems and solutions. The application depends upon how organizations choose to: structure the
development, engineer proposed solutions to the final solution, and evaluate and verify the software system.
Although model-based software engineering is a relatively new practice in the software development industry, it is an
important process which mimics the natural style of human thinking. People have goals that govern their production
of work. All work is processed into human thinking as models which are analyzed for the best possible solution.

MBSE will become important in the development of software systems by teams due to the easy model
representational development and easy test simulation. The fundamental key activities of building domains and
applications are processed and modified iteratively and evolutionally. This strategy emphasizes the design and test
phases, creating opportunities for multiple development approaches. The use of modeling and simulation unifies the
engineering design activities. The practice of model-based software engineering, with its methods of creating
efficient and usable software systems, will play a key role in the future of industrial software design.

REFERENCES
[1] Jo, Chang-Hyun, Chen, Guobin, and Choi, James, “A New Approach to the BDI Agent-Based Modeling,”

SAC’04, Cyprus, 2004, pg. 1541-1542.
[2] Rozenblit, Jerzy, “Integrative, Model-Based Engineering Design,” 1997 Workshop on Engineering of

Computer-Based Systems (ECBS ’97), 1997, pg. 476-477.
[3] Sharma, Sudhir K., “Hardware Development and Model-Based Design,” Dr. Dobb’s Portal, November 24,

2006.
[4] Traetteberg, Hallvard, “Model-based User Interface Design,” Doctoral Thesis, NTNU, Norway, 2002.

Barbara Bernal Thomas

Barbara Bernal Thomas is a full professor in the School of Computing and Software Engineering at Southern
Polytechnic State University (SPSU) for the last 20 years. Her primary teaching areas are Software Engineering, User-
Centered Design, and Computer Graphics & Multimedia. Barbara is directly involved in the Usability Center at SPSU
which accepts projects and partnerships with industry (web site: usability.spsu.edu). She is involved with computer
educational support for local businesses in the Atlanta area through Software Education & Support (her consulting
company). She does specialized software development and evaluation as a consultant. Professor Thomas has given
numerous papers, tutorials and presentations locally and internationally on Human-Computer Interaction and
Software Engineering. She is currently the ASEE Southeastern Section Proceedings Editor.

