Evaluation of Bessel Functions Using a Computer Program

P. S. Yeh, Ph.D.¹

Abstract – In cylindrical coordinate, there are two types of Bessel functions. These functions are the Bessel function and the modified Bessel function. Both functions are expressed mathematically by infinite power series, and each one consists of different orders, beginning with the zero-order, and then the first order, the second order, and so on. The Bessel function is the solution of the Bessel differential equation, which is a linear, second-order ordinary differential equation. Similarly, the modified Bessel function is the solution of modified Bessel differential equation. The difference between these two differential equations is the signs of the non-differential terms. The applications of Bessel functions are in the scientific areas of elasticity, electrical field theory, aerodynamic flutter analysis, fluid flow, and heat transfer by conduction. An executable computer program has been developed in this study for the numerical computation of the Bessel function and the modified Bessel function. This program is called BESSEL.EXE. It is distributed free by contacting the author through his e-mail address.

Keyword: Bessel functions, modified Bessel functions, computer program.

INTRODUCTION

The Bessel differential equation is an ordinary linear differential equation given by the following form [Bronshtein,1], [Carslaw, 2], [Morse, 3]:

$$r^{2}\frac{d^{2}T}{dr^{2}} + r\frac{dT}{dr} + (r^{2} - m^{2})T = 0$$
(1)

Where m is assumed to be a real and positive integer constant. T is the dependent variable such as the temperature, and r is the independent variable such as the radial coordinate in the cylindrical system. The first independent solution of Equation 1 is given by the following equation, which is known as the Bessel function of the first kind of order m [Bronshtein, 1], [Carslaw, 2], [Morse, 3], [Schneider, 4]:

$$J_m(r) = \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{r}{2})^{m+2n}}{n!(m+n)!} \quad m = 0, 1, 2, 3, \cdots$$
(2)

The second independent solution of Equation (1), which is known as the Bessel function of the second kind of order m, is given as follows [Bronshtein, 1], [Carslaw, 2], [Morse, 3], [Schneider, 4], [Yeh, 5]:

¹ Professor Emeritus of Engineering, Jacksonville State University, 205 Macon Drive SE, Jacksonville, AL 36265. E-mail: psyeh@jsu.edu

$$Y_m(r) = \frac{1}{p} \{ 2J_m(r) [\ln(\frac{r}{2}) + 0.5772157] - \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{r}{2})^{m+2n}}{n!(m+n)!} [\sum_{p=1}^{m+n} p^{-1} + \sum_{p=1}^n p^{-1}] - \sum_{n=0}^{m-1} (\frac{r}{2})^{-m+2n} \cdot \frac{(m-n-1)!}{n!} \}$$

Where
$$m = 0, 1, 2, 3, ... and$$
 for $n = 0$, replace $\sum_{p=1}^{m+n} p^{-1} + \sum_{p=1}^{n} p^{-1}$ by $\sum_{p=1}^{m} p^{-1}$ (3)

The second type of Bessel differential equation, known as the modified Bessel differential equation, is shown in the following [Bronshtein, 1], [Carslaw, 2], [Morse, 3], [Schneider, 4], [Yeh, 5], [Hilderbrand, 7]:

$$r^{2}\frac{d^{2}T}{dr^{2}} + r\frac{dT}{dr} - (r^{2} + m^{2})T = 0$$
(4)

The two independent solutions to this differential equation are known as the modified Bessel function of the first kind of order m, and the modified Bessel function of the second kind of order m, respectively. These two solutions are given below [Bronshtein, 1], [Carslaw, 2], [Morse, 3], [Schneider, 4], [Yeh, 5], [Duffy, 7], [Hilderbrabd, 8]:

The modified Bessel function of the first kind of order m:

$$I_m(r) = \sum_{n=0}^{\infty} \frac{\left(\frac{r}{2}\right)^{m+2n}}{n!(m+n)!} \quad m = 0, 1, 2, 3, \cdots$$
(5)

The modified Bessel function of the second kind of order m:

$$K_{m}(r) = (-1)^{m+1} I_{m}(r) [\ln(\frac{r}{2}) + 0.5772157] + \frac{(-1)^{m}}{2} \sum_{n=0}^{\infty} \frac{(\frac{r}{2})^{m+2n}}{n!(m+n)!} [\sum_{p=1}^{m+n} p^{-1} + \sum_{p=1}^{n} p^{-1}] + \frac{1}{2} \sum_{n=0}^{m-1} (-1)^{n} \cdot \frac{(r}{2})^{-m+2n} \cdot \frac{(m-n+1)!}{n!} \qquad m = 0, 1, 2, 3, \dots$$

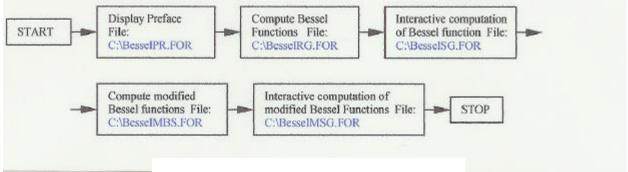
$$(6)$$

Where for
$$n = 0$$
, replace $\sum_{p=1}^{m+n} p^{-1} + \sum_{p=1}^{n} p^{-1}$ by $\sum_{p=1}^{m} p^{-1}$

Notice that all solutions to the Bessel and modified Bessel differential equations, as represented by Equations (2), (3), (5) and (6), are expressed in terms of infinite power series.

On the applications of the Bessel functions and the modified Bessel functions, many technical books have presented these functions either in graphical format or in numerical tables, or in both options. However, no record on the

availability of a computer program can be found by the present author. A summary of information on the Bessel functions and the modified Bessel functions is given in Table 1.


2007 ASEE Southeast Section Conference

Author or Authors		Bessel Fun	ctions		Modified Bessel Functions			
	Graphs R	ange of R	Tables	Range of R	Graphs Ra	nge of R	Tables	Range of R
Bronshtein and Somendyayev	Jo, J1, J2, J3	0 to 14	Jo, J1	0 to 10	Io, II	0 to 3	lo, 11	0 to 10
Carslaw and Yaeger	None		None		None		None	
Morse and Feshbach	None None		Jo, J1, J2 Yo, Y1, Y2	0 to 8.0 0 to 8.0	None None		lo, I1, I2 None	0 to 8.0
Schneider	Jo, J1 Yo, Y1	0 to 12 0 to 12	Jo, J1 Yo, Y1	0 to 15 0 to 14.9	Io, 11 Ko, K1	0 to 3.0 0 to 3	lo, Il Ko, K1	0 to 5.9 0 to 3.9
Duffy	Jo, J1, J2, J3 Yo, Y1, Y2, Y3	0 to 8.0 0 to 8.0	None None		Io, I1, I2, I3 Ko, K1, K2, K3	0 to 3.0 0 to 3.0	None None	
Hilderbrand	Jo, J1 Yo, Y1	0 to 10.0 0 to 10.0	None None		Io Ko	0 to 6.0 0 to 6.0	None None	
Yeh	Jo to J3 Yo to Y3	0 to 13.0 0 to 13.0	Jo to J3 Yo to Y3	0 to 13.0 0 to 13.0	lo to I3 Ko to K3	0 to 5.0 0 to 5.0	Io to I3 Ko to K3	0 to 13.0 0 to 13.0

Table 1. Comparison of Graphs and Tables for Bessel and Modified Bessel Functions

Computer Program

The generalized flowchart of the computer program, which was written in FORTRAN [Yeh, 5], [Yeh, 6], is shown in the following as Figure 1:

Note that a total of five files are generated from the computer program. These files are stored in the C: drive, that is, the hard disk drive. Two of the five files, namely, BesselRG.FOR and BesselMBS.FOR, are in the familiar form of numerical tables. However, compared to most of the existing tables in many of the published books, the upper range of the independent variable r (or R) in the present study is higher, which is 13.10 for the Bessel functions, and 13.00 for the modified Bessel functions. Through the use of a statistical or a graphical software, such as the Microsoft Excel, these tables can be presented in graphical forms, as it will be shown in a later section.

Presentation of Results

2007 ASEE Southeast Section Conference

A. The content of the computer file BesselPR.FOR is shown in Figure 2. It provides a simple description of the program, and an instruction on how to use the program interactively.

This program calculates Bessel Functions of the First kind and the second kind, J and Y, and modified Bessel functions of the first and the second kind, I and K. Each kind contains orders from zero to three, i.e., Jo. J1, J2, J3, Yo, Y1, Y2, Y3, Io, I1, I2, I3, and Ko, K1, K2, K3. The results are in the form of a numerical tables, with an increment of 0.10 in the independent variable R. The tables are saved in C-drive, with file names as TABLEBRG.FOR for the Bessel functions, and TABLEMBS.FOR for the modified Bessel functions. Using Microsoft Excel, these tables can be plotted in graphical forms.

To calculate Bessel functions and modified Bessel functions for a given value of R, key in the value of R and press ENTER (R is between 0.00 and 13.10 for the Bessel functions, and between 0.00 and 5.00 for the modified Bessel functions. To terminate the calculation, key in -1.0 and press ENTER. The results from each of these calculations are stored in a file in the C-drive, namely BesselSG.FOR for the Bessel functions, and BesselMSG.FOR for the modified Bessel functions.

Figure 2. The Computer File BesselPF.FOR

B. For the output data file BesselRG.FOR, the numerical table consists of two pages. A portion of the first page is shown in Figure 3. The increment of the independent variable r (or R) is 0.10, and the range is from 0.00 to 13.10. The order of the Bessel function is from zero to three, which is more than many of the tables in the existing published books. Through the use of Microsoft Excel, this table can be represented in a graphical form, as shown in Figure 4 and Figure 5. The Bessel functions of the first kind possess a finite numerical value at R=0, which is either 1.00 or 0.00. While the Bessel functions of the second kind all approach negative infinite as R approaches zero. As the value of R increases, all Bessel functions display the characteristic of oscillating waves and at the same time decreasing values, that is, a damping effect.

THE	2. 27.	405 5. 493 30.	635 33	.654 1 .776 3	EL FUNC 1.792 6.917 2.048	FION OF TH 14.931 40.058	HE FIRST H 18.071 43.200		1.352 9.483
	R	JO	Jl	J2	J3	YO	Yl	¥2	¥3
	.00	1.00000	.00000	.00000	.00000	-99999.0	-99999.0	-99999.0	-99999.0
	.10	.99750	.04994	.00125	.00002	-1.53424	-6.45895	-127.64480	-5099.33200
	.20	.99002	.09950	.00498	.00017	-1.08111	-3.32382	-32.15714	-639.81900
	.30	.97763	.14832	.01117	.00056	80727	-2.29310	-14.48009	-190.77480
	.40	.96040	.19603	.01973	.00132	60602	-1.78087	-8.29833	-81.20247
	.50	.93847	.24227	.03060	.00256	44452	-1.47147	-5.44137	-42.05949
	.60	.91200	.28670	.04367	.00440	30851	-1.26039	-3.89279	-24.69157
	.70	.88120	.32900	.05879	.00693	19066	-1.10325	-2.96148	-15.81947
	.80	.84629	.36884	.07582	.01025	08680	97814	-2.35856	-10.81464
	.90	.80752	.40595	.09459	.01443	.00563	87313	-1.94591	-7.77536
1	.00	.76520	.44005	.11490	.01956	.08826	78121	-1.65068	-5.82152
1	.10	.71962	.47090	.13656	.02569	.16216	69812	-1.43147	-4.50723
1	.20	.67113	.49829	.15935	.03287	.22808	62114	-1.26331	-3.58990

1.30 1.40 1.50 1.60	.62009 .56686 .51183 .45540	.52202 .54195 .55794 .56990	.18303 .20736 .23209 .25697	.04114 .05050 .06096 .07252	.28654 .33790 .38245 .42043	54852 47915 41231 34758	-1.13041 -1.02239 93219 85490	-2.92967 -2.44197 -2.07354 -1.78967
1.70 1.80	.39798 .33999	.57777	.28174 .30614	.08515 .09880	.45203	28473 22366	78700 72595	-1.56704 -1.38955
1.90	.28182	.58116	.32993	.11342	.49682	16441	66988	-1.24586
2.00 2.10	.22389 .16661	.57672	.35283 .37462	.12894 .14528	.51038 .51829	10703 05168	61741 56751	-1.12778 -1.02930
2.10	.11036	.55596	.39506	.14528	.51829	.00149	51943	-1.02930
2.30	.05554	.53987	.41391	.17998	.51808	.05228	47262	87422
2.40 2.50	.00251 04838	.52019 .49709	.43098 .44606	.19811 .21660	.51041 .49807	.10049 .14592	42667 38134	81161 75606
2.50	04838	.49709	.44606	.21660	.49807	.14592	38134	70596
2.70	14245	.44160	.46956	.25405	.46050	.22763	29189	66006
2.80	18504	.40971	.47769	.27270	.43592	.26355	24767	61736
2.90 3.00	22431 26005	.37543 .33906	.48323 .48609	.29109 .30906	.40791 .37685	.29594 .32467	20382 16040	57706 53854
3.10	29206	.30092	.48621	.32644	.34310	.34963	11754	50129
3.20	32019	.26134	.48353	.34307	.30705	.37071	07536	46491
3.30 3.40	34430 36430	.22066 .17923	.47803 .46972	.35877 .37339	.26909 .22962	.38785 .40102	03403 .00628	42910 39363
3.50	38013	.13738	.45863	.38677	.18902	.40102	.04537	35834
3.60	39177	.09547	.44481	.39876	.14771	.41539	.08306	32310
3.70	39923	.05383	.42833	.40922	.10607	.41667	.11915	28786
3.80 3.90	40256 40183	.01282	.40930 .38786	.41803	.06450 .02338	.41411 .40782	.15345 .18576	25259 21729
4.00	39715		.36413	.43017	01694	.39793	.21590	18202
4.10 4.20	38867 37656		.33829 .31054	.43331 .43439	05609 09375	.38459 .36801	.24370 .26900	14684 11183

Figure 3. The Output Data File BesselRG.FOR

C. The file BesselSG.FOR is shown in Figure 6. For the interactive computation, the input value for r (or R) can be in any arbitrary sequence, as long as it is within the range of 0.00 to 13.10. For each value of r, eight values of the Bessel function are evaluated.

Bessel Functions of The First Kind

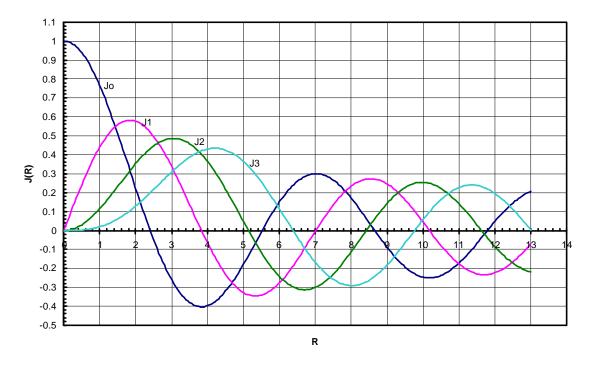


Figure 4. Graphical Presentation of the Bessel Function of the First Kind

2007 ASEE Southeast Section Conference

Bessel Functions of The Second Kind

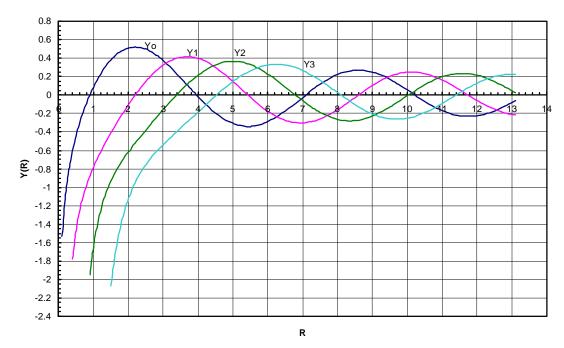


Figure 5. Graphical Presentation of the Bessel Function of the Second Kind

R= Jo= Yo=	.1000 .99750 -1.53424	J1= Y1=	.04994 -6.45895	J2= Y2=	.00125 -127.64480		.00002 -5099.33200
R= Jo= Yo=	1.0000 .76520 .08826	J1= Y1=	.44005	J2= Y2=	.11490 -1.65068		.01956 -5.82152
R= Jo= Yo=	2.0000 .22389 .51038	J1= Y1=	.57672 10703	J2= Y2=	.35283 61741		
R= Jo= Yo=	3.0000 26005 .37685	J1= Y1=	.33906 .32467	J2= Y2=	.48609 16040	J3= Y3=	.30906 53854
R= Jo= Yo=	4.0000 39715 01694	J1= Y1=	06604 .39793	J2= Y2=	.36413 .21590		.43017 18202
R= Jo= Yo=	5.0000 17760 30852	J1= Y1=	32758 .14786	J2= Y2=	.04657 .36766		.36483 .14627
R= Jo= Yo=	6.0000 .15065 28819	J1= Y1=	27668 17501	J2= Y2=	24287 .22986	J3= Y3=	.11477 .32825
R= Jo= Yo=	7.0000 .30008 02595	J1= Y1=	00468 30267	J2= Y2=	30142 06053	J3= Y3=	16756 .26808

Figure 6. The content of the File BesselSG.FOR

D. The data file BesselMBS.FOR contains the numerical table for the modified Bessel functions, which extends over two pages. A portion of the first page is shown in Figure 7. The Microsoft Excel graphical display is shown in Figure 8. At R=0, the numerical value of the modified Bessel function of the first kind of zero order, that is, I_0 , is 1.00, while the values of all higher order functions, such as I_1 , I_2 , and I_3 , are 0.00. The values of these functions increase as the value of R increases. On the other hand, for the modified Bessel functions of the second kind, such as K_0 , K_1 , K_2 , and K_3 , the numerical values approach positive infinite as the value of R approaches zero. These functions all become very small in values as the value of R becomes large.

R	IO	Il	I2	13	к0	К1	К2	К3
.00	1.00000	.00000	.00000	.00000	99999.0	99999.0	99999.0	99999.0
.10	1.00250	.05006	.00125	.00002	2.42707	9.85384	199.50400	7990.01200
.20	1.01003	.10050	.00502	.00017	1.75270	4.77597	49.51243	995.02450
.30	1.02263	.15169	.01133	.00057	1.37246	3.05599	21.74574	292.99910
.40	1.04040	.20403	.02027	.00135	1.11453	2.18435	12.03630	122.54740
.50	1.06348	.25789	.03191	.00265	.92442	1.65644	7.55018	62.05791
.60	1.09205	.31370	.04637	.00460	.77752	1.30283	5.12030	35.43820
.70	1.12630	.37188	.06379	.00737	.66052	1.05028	3.66133	21.97216
.80	1.16651	.43286	.08435	.01110	.56535	.86178	2.71980	14.46078
.90	1.21299	.49713	.10826	.01597	.48673	.71653	2.07903	9.95665
1.00	1.26607	.56516	.13575	.02217	.42102	.60191	1.62484	7.10126
1.10	1.32616	.63749	.16709	.02989	.36560	.50976	1.29244	5.20954
1.20	1.39373	.71468	.20260	.03936	.31851	.43459	1.04283	3.91069
1.30	1.46928	.79733	.24262	.05081	.27825	.37255	.85140	2.99223
1.40	1.55340	.88609	.28755	.06452	.24365	.32084	.70199	2.32653
1.50	1.64672	.98167	.33783	.08077	.21381	.27739	.58366	1.83380
1.60	1.74998	1.08481	.39397	.09989	.18795	.24063	.48875	1.46250
1.70	1.86397	1.19635	.45650	.12223	.16550	.20936	.41180	1.17832
1.80 1.90	1.98956	1.31717	.52604	.14819	.14593	.18262	.34885	.95784
2.00	2.12774 2.27959	1.44824 1.59064	.60327	.17820 .21274	.12885 .11389	.15966 .13987	.29691 .25376	.78473 .64739
2.00	2.2/959	1.74550	. 78390	.21274	.11389	.13987	.25376	.53738
2.10	2.44020	1.91409	. 88906	.25235	.08927	.10790	.18736	.44855
2.20	2.82961	2.09780	1.00543	.34922	.08927	.09498	.16173	.37626
2.30	3.04926	2.29812	1.13415	.40787	.07022	.08372	.13999	.31704
2.50	3.28984	2.51672	1.27647	.47437	.06235	.07389	.12146	.26823
2.60	3.55327	2.75538	1.43374	.54963	.05540	.06528	.10562	.22777
2.70	3.84165	3.01611	1.60750	.63463	.04926	.05774	.09202	.19407
2.80	4.15730	3.30105	1.79940	.73048	.04382	.05111	.08033	.16587
2.90	4.50275	3.61261	2.01129	.83841	.03901	.04529	.07024	.14217
3.00	4.88079	3.95337	2.24521	.95975	.03474	.04016	.06151	.12217
3.10	5.29449	4.32620	2.50339	1.09602	.03096	.03563	.05394	.10524
3.20	5.74720	4.73425	2.78830	1.24888	.02759	.03164	.04737	.09086
3.30	6.24263	5.18095	3.10265	1.42016	.02461	.02812	.04165	.07860
3.40	6.78481	5.67010	3.44945	1.61191	.02196	.02500	.03666	.06813
3.50	7.37820	6.20583	3.83201	1.82639	.01960	.02224	.03231	.05916
3.60	8.02767	6.79271	4.25395	2.06610	.01750	.01980	.02850	.05146
3.70	8.73861	7.43574	4.71929	2.33380	.01563	.01763	.02516	.04483
3.80	9.51688	8.14041	5.23245	2.63257	.01396	.01571	.02223	.03911
	10.36894	8.91278	5.79829	2.96581	.01248	.01400	.01966	.03416
	11.30190	9.75945	6.42218	3.33727	.01116	.01248	.01740	.02989
	12.32355		7.11003	3.75111	.00998	.01114	.01541	.02617
	13.44244		7.86834	4.21194	.00892	.00994	.01366	.02295
	14.66795		8.70429	4.72486	.00799	.00887	.01211	.02014
	16.01041		9.62577	5.29549	.00715	.00792	.01075	.01770
	17.48114			5.93008	.00640	.00708	.00954	.01556
	19.09259		11.76105	6.63553 7.41946	.00573 .00514	.00632	.00849	.01370
	20.85841 22.79363			7.41946 8.29032	.00514	.00565	.00754	.01207 .01064
	22.79363			8.29032 9.25743	.00459	.00505	.00870	.01064
	27.23981		17.50557	9.25743	.00412	.00453	.00531	.00939
	29.78879				.00389	.00404	.00473	.00733
5.10	27.10019	20.00037	17.52509	11.52200	.00551	.00502	.001/5	.00755

Figure 7. The output Data File BesselMBS.FOR

Modified Bessel Functions of the first kind (I) and second kind (K)

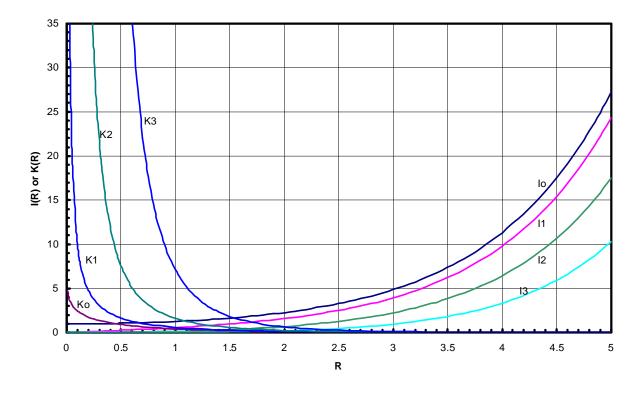


Figure 8. Graphical Presentation of the Modified Bessel Functions of the First (I) and Second (K) Kinds

E. For the interactive computation of the modified Bessel functions, the output file BesselMSG.FOR is shown in Figure 9. The file includes all input values of R and the corresponding values of the modified Bessel functions.

To start interactive computation of modified Bessel functions, key in the value of R and press ENTER. To stop the calculation, key in -1.0 and press ENTER. The results are stored in a file in the C-drive, named BesselMSG.FOR

R=	.9000						
IO=	1.21299	I1=	.49713	I2=	.10826	I3=	.01597
Ko=	.48673	K1=	.71653	K2=	2.07903	K3=	9.95666
R=	6.0000						
Io=	67.23442	I1=	61.34194	I2=	46.78709	I3=	30.15054
Ko=	.00125	K1=	.00134	K2=	.00169	K3=	.00248
R=	3.5000						
IO=	7.37820	I1=	6.20583	I2=	3.83201	I3=	1.82639
Ko=	.01960	K1=	.02224	K2=	.03231	K3=	.05916
R=	7.0000						
R= Io=	7.0000 168.59390	I1=	156.03910	I2=	124.01130	I3=	85.17548
		I1= K1=	156.03910 .00042	I2= K2=	124.01130 .00057		
Io= Ko=	168.59390 .00047						
Io= Ko= R=	168.59390 .00047 1.5500	K1=	.00042		.00057	K3=	.00077
Io= Ko=	168.59390 .00047 1.5500 1.69706	K1=		K2=		K3= I3=	
IO= KO= R= IO=	168.59390 .00047 1.5500	K1= I1=	.00042	K2= I2=	.00057	K3= I3=	.00077
IO= KO= R= IO=	168.59390 .00047 1.5500 1.69706 .20042	K1= I1=	.00042	K2= I2=	.00057	K3= I3=	.00077
I0= K0= R= I0= K0=	168.59390 .00047 1.5500 1.69706 .20042	K1= I1= K1=	.00042	K2= I2=	.00057	K3= I3= K3=	.00077

Ko= 2.58751 K1= 11.63361 K2= 276.31960 K3= 13014.91000 R= 10.0000 2815.71600 I1= 2281.51900 I3= 2670.98900 I2= 1758 38100 IO= .00000 Ko= .00000 K1= .00000 K2= .00000 K3=

Figure 9. The Content of the File BesselMSG.FOR

SUMMARY

For the evaluation of Bessel functions and modified Bessel functions, an executable computer program has been developed in the present study. The program is named **BESSEL.EXE**. A free copy of this program can be obtained from the author by contacting him through his e-mail address. No specific computer programming language compiler is required in the computer system itself, as long as the machine is IBM compatible. The program creates numerical tables for the Bessel and modified Bessel functions, respectively, for both the first kind and the second kind, for order from zero to third. The range of the independent variable can be from 0 to 13.0, and the increment is 0.10. To obtain immediate feedback from the program, it can be run interactively, by entering a numerical value of the independent variable between 0.0 and 13.00. All computed function values are stored in a file in the C: drive, and also displayed on the computer display screen. The interactive process can be repeated as many times as needed.

REFERENCES

- Bronshtein, I. N., Semendyayev, K. A., Hand Book of Mathematics, Van Nostrand Reinhold Company, New . 1985, pages 3-4, 410-412.
- [2] Carslaw, H. S., and Jaeger, J. C. <u>Conduction of Heat in Solids</u>. 2nd ed. 1959. Oxford University Press. Pages 488-490.
- [3] Morse, Philip M., and Feshbach, Herman. <u>Methods of Theoretical Physics</u>. McGraw-Hill Book Company, Inc. 1953. Page 1924, 1321-1322.
- [4] Schneider, P. J. <u>Conduction Heat Transfer</u>, Addison-Wesley Publishing Company, Reading, Massachusetts. 1955, pages 46-50, 56, 369-375.
- [5] Yeh, P. S. "Temperature Distribution in a Cylindrical Core and Coil Assembly with Heat Generation". ASEE Southeast Section Conference Proceedings. April 4-6, 2004. Auburn University, Auburn, Alabama.
- [6] Yeh, P. S. "Two-dimensional Temperature Distribution in a Transformer Coil Assembly with Heat Generation". ASEE Southeast Section Conference Proceedings. April 3-5, 2005. The University of Tennessee at Chattanooga, Chattanooga, Tennessee.
- [7] Duffy, Dean G. Advanced Engineering Mathematics, CRC Press, New York. 1998. Pages 305-311.
- [8] Hilderbrand, Frances B. Advanced Calculus for Applications. Prentice Hall, Inc. 1962. Pages 142-154.

P. S. Yeh

P. S. Yeh received his B.S. degree from the National Taiwan University in Taipei, Taiwan, the M.S. degree from the University of Illinois in Urbana-Champaign, Illinois, and the Ph.D. degree from Rutgers University in New Brunswick, New Jersey, all in Mechanical Engineering. He is a Professor Emeritus in Engineering at Jacksonville State University, in Jacksonville, Alabama. His major areas of teaching and research are in fluid mechanics, thermodynamics, heat transfer, computer-aided design, computer programming, acoustics, and environmental engineering.