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USFKAD: An Expert System for Partial Differential 
Equations 

Arthur David Snider1, Sami Kadamani2 

Abstract – The execution of the solution, by the separation of variables process, of the Poisson, diffusion, and 
wave equations (homogeneous or nonhomogeneous) in rectangular, cylindrical, or spherical coordinate systems, 
with Dirichlet, Neumann, Robin, singular, periodic, or Sommerfeld boundary conditions, can be carried out in the 
time, Laplace, or frequency domains by a decision-tree process, using a library of eigenfunctions. We describe an 
expert system, USFKAD, that has been constructed for this purpose.  
 
Keywords:  Partial differential equations, symbolic computing, eigenfunctions, analytic solutions, separation of 
variables. 

PARTIAL DIFFERENTIAL EQUATIONS IN THE ENGINEERING CURRICULUM 

Every practicing engineer whose specialty involves modeling of physical phenomena, such as electromagnetic 
fields, temperature, sound, stress and strain, fluid flow, diffusion, etc., has to deal with the mathematical syntax of 
the discipline - the partial differential equation (PDE). For example, the electrical engineering undergraduate 
lecturer in electromagnetics, semiconductor processing, thermal issues in electronic packaging, etc. should be able 
to call on this mathematical concept, at least peripherally, to provide the students some familiarity with the technical 
issues involved in the quantitative models. However, this subject (PDEs) is vast and complicated, and compromises 
have to be made in incorporating it into the undergraduate's curriculum. A 2-semester course that deals honestly and 
rigorously with the subject is out of the question. 

The compromises presently employed at undergraduate institutions are: 

(1) A short treatment of PDEs that relies completely on numerical solvers; or  

(2) A brief tutorial that covers the basics of the separation of variables technique. 

Each of these is unsatisfactory. (1) is inferior to (2) because, even with the graphic capabilities of today's hardware 
and software, it is extremely difficult for an inexperienced undergraduate user to tell, from a vast assemblage of 
tabulations and graphs, how the solutions will respond to changes in the boundary conditions or the physical 
dimensions - issues of prime importance to engineering. For example consider the frequency of the resonant mode 

of a rectangular cavity with sides X, Y and Z given by 2 2 21/ 1/ 1/c X Y Zω π= + + .  This is not a terribly 
complicated formula, but contemplate trying to deduce it from graphs! 

The eigenfunction expansions yielded by (2) do reveal these dependencies (and are exact). The drawback of this 
solution procedure is the lack of time to impart expertise in its implementation except for a few elementary cases - 
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rectangular geometries and ideal conductors, for instance. The electrical world of cables, motors, and antennas is 
replete with cylindrical and spherical devices made of lossy materials, whose analyses entail Bessel functions and 
transcendental eigenvalue equations. The present-day curriculum has no room for the mastery of the “special 
functions" that occupied the toolbox of the 1950s engineer. On the other hand, usually it is well within the 
capability of senior undergraduates to observe and verify most features of an eigenfunction solution expansion.  

Therefore an expert system, USFKAD, for partial differential equations that can automatically cull, from a library of 
about 200 eigenfunctions, the assemblage constituting the solutions to explicit problems would be a powerful 
enabler for undergraduate engineering training:  

1. It would allow engineering analysis/design to proceed efficiently without being sidetracked by 
concerns of mathematical solvability; 

2. It would cut across many engineering disciplines; 

3. It could be used to give a perspective on the separation-of-variables technique itself, by enabling 
“reverse-engineering” of the explicit solution formulas.  

In fact it would also be a research tool that the engineer could continue to use in his professional career.  
Eigenfunction expansions are integral to the mode-matching procedure that is used in contemporary computational 
electromagnetism. And indeed, virtually every technical paper describing a new numerical solver compares its 
results with eigenfunction expansions, as testament to its accuracy. 

PDE SOLUTION STRUCTURES 

USFKAD is based on the theme that the mathematical structure, afforded by superposition, of the eigenfunction 
method for solving the separable PDEs of engineering can be expressed by a compact, universal, inviolate, and 
reasonably lucid algorithm [1]; its formidability lies only in the details of its implementation - that is, in the 
enormous variety of eigenfunctions that must be employed for the curvilinear geometries. Thus it is feasible to 
contemplate a smart computer program that exploits this structure judiciously to select, from a library of 
eigenfunctions, the assemblage constituting the solutions to problems with explicit initial/boundary conditions.  

In the following, a list of examples of PDE solutions will be presented that progressively demonstrate the decision-
tree nature of the general separation of variables procedure. (In fact, this will exemplify our thesis that by reverse-
engineering explicit solution formulas one can experience a tutorial intercourse with the procedure itself.) 

Example 1    Steady state heat flow in a rectangle with edge and interior heat sources (nonhomogeneous 
Laplace/Poisson equation in two dimensions, rectangular coordinates, Dirichlet conditions on two sides, Neumann 
conditions on two sides): 
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The USFKAD solution is as follows:  
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Here we see some of the features of separation of variables: 

1. The basic decomposition of the problem into three subproblems, each of which contains only one 
nonhomogeneous equation; 

2. Each subsolution expressed as a sum of terms containing an eigenfunction factor, satisfying 
homogeneneous boundary conditions at each end, and a “non-eigenfunction” factor, satisfying a 
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homogeneous boundary condition at one end only (note the exceptional form of the latter factor in 2Ψ , 

and of the normalization constants for the cosine’s “DC” term when  0xκ = ); 

3. Expansion coefficients computed by orthogonality for boundary nonhomogeneities; 

4. The construction  of the Green’s function out of the same eigenfunctions. 

Example 2    Steady state heat flow in a cube with facial heat sources and imperfect facial insulation (homogeneous 
Laplace equation in three dimensions, rectangular coordinates, homogeneous Dirichlet conditions on four sides, 
nonhomogeneneous Dirichlet condition on one side, homogeneous Robin condition on one side): 
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The USFKAD solution: 
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This example illustrates the straightforward extension of the procedure to three dimensions and the transcendental 
equation that the Robin boundary condition invokes for the eigenvalues. 
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Example 3    Steady state heat flow in a cylindrical sector with facial heat sources (homogenous Laplace equation 
in the three dimensions inside a partial cylinder, nonhomogenous Dirichlet condition on the top and one flat side, 
homogenous Dirichlet conditions on the bottom and the curved wall, and a homogenous Neumann condition on the 
other flat side): 
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This example illustrates the singular boundary condition for ρ = 0 and the Lebedev eigenfunctions in ρ  induced 
by the nonhomogenous condition on the flat face forθ = Θ .  The singular boundary condition includes a 
continuous, rather than discrete, spectrum.  (Other than [2], the Lebedev expansions do not appear in any English 
language mathematics textbook except [3], where their correctness is betrayed by a persistent systematic error in the 
tabulations. Their omission is probably due to their intimidating nomenclature {note the analytic continuation of the 
subscript into the complex plane}. Ignoring them is, however, criminal, because {as we see} they occur in realistic 
problems; indeed, in the analysis of edge diffraction [2] they are crucial.) 
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Example 4   Transient heat flow in a rectangle with transient interior and edge heat sources (nonhomogenous 
diffusion equation, two dimensions, rectangular coordinates, homogenous Dirichlet conditions on two sides, 
homogenous Neumann condition on one side, time-dependent nonhomogenous Neumann conditions on one side): 
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With ( )int , ;eriorF x y s and ( );y YF x s= denoting the Laplace transforms of ( )int , ,eriorf x y t  and ( , )y Yf x t= , 
respectively, USFKAD expresses the Laplace-transformed solution as 

( )
1 2

2
1 sin cosh ;

x
x x xx sy A s

κ
κ κ κ

Ψ = Ψ + Ψ

Ψ = +∑
 

with     
2 3, , ,...x X X X

π π πκ =  

( ) ( )20
2; sin ;

x

X
x x y Ys

A s dx x M F x s
X κ

κ κ =+
= ∫  

( )

2

2

2 2

2

0 0;
1 .

sinh

sin cos , ;

x

x y

x

s

x x

x y x y

if s
M

otherwise
s sY

x y A s

κ

κ κ

κ

κ κ

κ κ κ κ

+

 + =


= 


+ +

Ψ = ∑ ∑

 

with     

( ) ( )int
0 0 2 2

2 3, , ,...

2 30, , , ,...

( , ; ) , , 02, ; sin cos

1 0;

2 .

y

y

x

y

eriorX Y
x y x y

x y

y

X X X

Y Y Y
F x y s x y t

A s dx dy x y N
X s

if
YN

otherwise
Y

κ

κ

π π πκ

π π πκ

κ κ κ κ
κ κ

κ

=

=

 + Ψ =
= ∫ ∫   + + 

 == 



 



2006 ASEE Southeast Section Conference 

This example demonstrates how the logic that solved Example 1 can be retooled to solve Laplace domain problems; 
the transformed PDE is equivalent to a nonhomogenous Laplace (Poisson) equation with the eigenvalues shifted and 
the initial condition wedded with the nonhomogeneity. 

Example 5   Sound wave inside a sphere (homogenous wave equation inside a sphere, time-independent 
nonhomogenous Dirichlet condition on the surface): 
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This example demonstrates the decomposition of the solution into a steady-state component and a transient 
component.  The time factors can be treated just like the non-eigenfunctions in the previous solutions, except that 
they satisfy initial conditions instead of boundary conditions. 
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THE STATE OF THE ART 

Software for obtaining (analytic) solutions to ordinary differential equations exists in several forms, including 
Mathematica® and MAPLE®. It has not received universal adoption because extensive training in ordinary 
differential equations is already part of the required curriculum for all SMET (Science, Mathematics, Engineering, 
and Technology) students. For partial differential equations, MAPLE's pdsolve is a step in the right direction, but its 
arcane solution format provides little assistance for a non-expert in fitting the initial and boundary conditions that 
determine such dependencies. An example of its output, the electrostatic potential inside a sphere with charges 
distributed on the surface is displayed below. It is expressed (correctly) in terms of hyper-geometric and complex 
signum functions. But comparing this with the more recognizable solution display using USFKAD, one can clearly 
see the obvious simplification and straightforwardness of the latter: 
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USFKAD's output is expressed in terms of familiar functions, and is completely rendered; all coefficients are 
specifed in terms of the boundary data. However, because pdsolve was designed to solve a much more general class 
of PDEs [4], it employs very generic terminology; nonspecialist users may be hard pressed to recognize the simple 
factor lr , which is expressed (quite correctly) as a hypergeometric function, or the old-fashioned (“Associated 
Legendre function”) expressions for the spherical harmonics mY ,l . Furthermore there are "arbitrary constants" in 

the pdesolve display which the user has to fit to the boundary conditions. 

THE USER INTERFACE 
USFKAD is written in C++. Flow charts for its logic are given in [5]. The executable file outputs a LaTeX file 
containing the solution; the output, which can subsequently be font-customized by the user, must be processed by 
LaTeX to generate a postscript file. USFKAD prints the following queries on screen: 
  
Select the Partial Differential Equation:  
0 - Laplace or Poisson: Laplacian Psi + f(interior) = 0 ; 
l - Diffusion, Time Domain: dPsi/dt = Laplacian Psi + f(interior); 
2 - Diffusion, s-plane: s Psi - Psi(t=0) = Laplacian Psi + F(interior); 
3 - Wave, Time Domain: d2Psi/dt2 = Laplacian Psi + f(interior); 
4 - Wave, s-plane: s2 Psi - sPsi(t=0) - Psi'(t=0) = Laplacian Psi + F(interior); 
5 - Wave, Frequency Domain: - omega2 Psi = Laplacian Psi + F(interior) . 
 
Is the PDE homogeneous (enter 0) or nonhomogeneous (enter 1)? 
Enter 1, 2, or 3 for 1, 2, or 3 dimensions. 
 
Select the Coordinate System: 0 - Rectangular, 1 - Cylindrical or Polar, 2 - Spherical. 
 
Select the boundary condition at the lower (upper) end for the coordinate x (y, z, r, rho, theta):  
Enter 1 for Dirichlet, Homogeneous;             Enter 2 for Dirichlet, Nonhomogeneous; 
Enter 3 for Neuman, Homogeneous;              Enter 4 for Neuman, Nonhomogeneous; 
Enter 5 for Robin, Homogeneous;                  Enter 6 for Robin, Nonhomogeneous; 
Enter 7 for Periodic Boundry Conditions;      Enter 8 for Singular Boundary Condition; 
Enter 9,10 for Sommerfeld Outgoing, Incoming Wave Condition. 
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CONCLUSIONS 
USFKAD was constructed from flow charts depicting the algorithmic solution of partial differential equations; the 
charts are given in [5]. The formulas are mathematically rigorous, supported by [1]. The executable code has a size 
of  about 1.4 MB, and it contains about 200 eigenfunction subroutines. 
 
USFKAD's "coziness," the ease of moving between the time, Laplace, and Fourier domains, and the systematic 
incorporation of nonhomogeneities could make it the engineer's tool of choice in many situations. It is available for 
downloading at the first author's home page: http://ee.eng.usf.edu/people/snider2.html. Further details on the lexicon 
of the software in expressing the physical dimensions and boundary conditions appears in the accompanying files. 
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