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Two-Dimensional Temperature Distribution in a Transformer 
Core-and-Coil Assembly with Heat Generation 

P. S. Yeh, Ph.D.1 

Abstract 

A residential distribution transformer consists of a cylindrical steel tank and a core-and-coil 
assembly placed concentrically within the tank.  The tank is nearly filled with cooling fluid, so that 
the heat generated inside the core-and-coil can be dissipated to the surrounding air through the 
cooling fluid. The transfer of heat is mostly in the radial direction through natural convection of the 
fluid.  The power rating of the transformer can be from 10 to 100 kVA, with the heat loss at full load 
operation ranging from 178 to 1,177 watts. The diameter of the core-and-coil can be from 29 to 47 
cm, and its height from 23 to 51 cm. The present study is on the mathematical and numerical 
analyses of the temperature variation within the core-and-coil assembly.  Due to the continuous 
flow of electrical current in the coil winding, and due primarily to the electrical resistance of the 
winding material, a small fraction of the electrical energy is converted into heat energy, and the 
heat energy is physically exhibited in the form of an elevated temperature in the winding.  To study 
the operational characteristics of the device, especially to prevent the malfunction or even the 
failure of the device, it is important to know the temperature variation within the device.  A 
previous study [1] based on the one-dimensional analysis of the core-and-coil assembly operating 
under steady state condition shows that the factors to be considered are: the thermal conductivity of 
the core-and-coil assembly, the amount of heat generating within the electrical conductor, and the 
physical dimensions of the core-and-coil assembly. 

In the present study, the two-dimensional analysis is to be taken. The variation of temperature with 
respect to the axial position as well as the radial direction is to be considered. This approach 
indicates that a partial differential equation is to be solved. The equation consists of the 
temperature as the dependent variable, and the geometric coordinates in the axial direction and the 
radial position as the independent variables. The parameters contained in the original equation are 
the amount of heat generation, the thermal conductivity of the core-and-coil assembly, and, through 
the boundary conditions, the over-all height, the inner and outer radii, and the surface 
temperatures of the assembly. 

All engineering students acquire their proficiency in mathematics through the required courses in 
calculus, differential equations, computer programming, and engineering mathematics. Some 
engineering majors need additional math courses such as linear algebra, advanced calculus, 
complex variables, or partial differential equations. For an engineering problem which requires the 
solution of a partial differential equation, such as in the present case, a packaged computer program 
using finite element analysis can provide a graphical representation of the solution. However, in 
order to see the beauty and the power of science and mathematics, it is probably best to express the 
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solutions in a mathematical form, and then to extract the necessary numerical values from these 
final equations.     

Introduction 

A group of electromagnetic devices, which employ the principle of mutual induction to convert 
variations of current in a primary circuit into variations of voltage and current in a secondary 
circuit, such as a transformer, an electromagnetic relay, or a generator, consists of an electrical coil 
which is wound around a core made of either an iron, a steel, or a cobalt. The core is usually of 
cylindrical in configuration, hence the complete assembly is also of cylindrical shape. A graphical 
representation of a residential distribution transformer is shown in Figure 1. The core and coil 
assembly is also shown in graphical form in the same figure. When electrical current flows through 
the coil, a small percentage of the electrical energy is lost in the form of heat. These losses consist of 
resistance loss in the windings, hysteresis loss in the core, and eddy currents in the core. The total 
loss is usually less than 10% of the total energy supplied. Due to these energy losses, the 
temperature in the assembly increases in comparison with its ambient, and if sufficient provision is 
provided for the continuous dissipation of heat, a steady state temperature distribution will 
eventually be reached. 

 

Figure 1. Graphical Representations of a Residential Distribution Transformer and the Core and Coil Assembly    

Two Dimensional Analysis 

During the steady state operation of an electromagnetic device, heat is generated within the coil 
assembly.  Since the coil carries electrical current, and the transmission of an electrical current is 
an irreversible process, a small fraction of the electrical energy is converted into heat energy, which 
is physically represented by the increase in temperature.  The rate of heat generation in joules per 
cubic meter per second, represented by  qe , is given by the following expression [2], [3] :     
 

q I J s m or W me e= −ρ 2 3 3 1( / / ) ( )   
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where ρ e is the electrical resistivity of the winding, in ohm m− , and I  is the current density, in 

A m/ 2 . 

As for the core of the device, there are magnetic flux lines passing through the magnetic material.  
However, since the flux lines represent the alteration of the atomic structure of the core material 
due to external force (i.e., the magneto-motive force), and is not a measure of the flow of charged 
particles through the core material, therefore, there is no energy generation or loss within the core.  
The temperature of the core remains essentially unchanged once a steady state is reached. 

In a realistic situation, the variation of temperature in both the radial and the axial directions 
should be considered.  The governing differential equation for such a case is given by the following 
relation [3], [5]:   
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Where k  is the thermal conductivity of the core-and-coil assembly, in W/m-C, T  is the 

temperature, in oC , r  is the radial coordinate, in m , and z  is the axial coordinate, in m . 

To solve this partial differential equation, let a new dependent variable  θ   be introduced such that 
the following relationship is true: 
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In Equation (3), the term q z h z ke ( ) /− 2  represents the particular solution of the differential 

equation given in Equation (2), and T2  is the temperature at the outer surface of the coil assembly. 

T2  enters into the problem through the boundary conditions which will be introduced later.  Then, 
Equation (2) can be transformed into the following equation: 
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Based on the separation of variables technique, which is applied very often in the solution of partial 
differential equation, the solution of  θ   can be represented by the product of two parts, namely,  θ 1   

and θ 2 , where θ 1  is a function of r  only, and θ 2  is a function of  z  only.  Therefore, the following 
relationship can be written: 
 
θ θ θ= 1 2 5( ) ( ) ( )r z  

In terms of  θ 1( )r  and  θ 2 ( )z , Equation (4) becomes the following: 
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The last equation can be rearranged into the following form:   
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where  m   is a positive integer constant.  It is called the separation constant.  Notice that Equation 
(7) consists of two ordinary differential equations, one of which, θ 1( )r  , contains  r  as the 

independent variable, the other one, θ 2 ( )z  , contains  z  as the independent variable.  Based on the 

regular procedure for the solution of a differential equation, the solution for  θ 2 ( )z  is given by 
either of the following equations: 

 For positive sign z C mz C mz a: ( ) sin( ) cos( ) ( )θ 2 1 2 8= +  

For negative sign z C mz C mz b: ( ) cosh( ) sinh( ) ( )θ 2 3 4 8= +   

Where  C1 , C2 , C3   and  C4  are the integration constants.  Depending on the sign of the right side 

of Equation (7), two sets of possible solution can be obtained for  θ 1( )r . These are given below: 

For positive sign r C I mr C K mr a: ( ) ( ) ( ) ( )θ1 5 0 6 0 9= +
 
For negative sign r C J mr C Y mr b: ( ) ( ) ( ) ( )θ1 7 0 8 0 9= +
 

Where C5 , C6 , C7 and C8  are all constants of integration. I mr0( )  is the zero-order modified Bessel 

function of the first kind, K mr0( )  is the zero-order modified Bessel function of the second kind,  

J mr0 ( )  is the zero-order Bessel function of the first kind, and  Y mr0 ( )  is the zero-order Bessel 
function of the second kind [4].  The Bessel Functions of the first kind and the second kinds have 
been studied in a previous publication by the present author [1]. The modified Bessel functions will 
be  studied in the following.  In general, the products of modified Bessel functions with 
trigonometric functions are used as the solution when the temperature is prescribed as an arbitrary 
function on a plane boundary, and the products of Bessel functions with hyperbolic functions are 
used as the solution when the temperature is prescribed as an arbitrary function on a circular 
boundary. 

In the present study, the solution of  θ  in Equation (4)  can be written as follows:    
 
θ = + ⋅ +[ sin( ) cos( )] [ ( ) ( )] ( )C mz C mz C I mr C K mr1 2 5 0 6 0 10
 

The zero-order modified Bessel function of the first kind, I mro( ) , and the zero-order modified 

Bessel function of the second kind, K mro( ) , using r  instead of mr  as the argument, are given 
respectively as follows [4]: 
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The boundary conditions to be applied to Equation (10) are listed below:     

At r r and z h the net heat transfer is zero= < <1 0 ,  

At r r and z h the temperature is T T or= < < = = =2 2 20 0, , θ θ  

At z and r r r the temperature is T T or= < < = = =0 01 2 2 2, , θ θ  

At z h and r r r the temperature is T T or= < < = = =1 2 2 2 0, , θ θ  

When these conditions are applied to Equation (10), the final solution is given below: 
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In Equation (13), I x and K x1 1( ) ( )  are the first-order modified Bessel function of the first kind 
and the first-order modified Bessel function of the second kind, respectively.  These are shown in 
Figure 2.  For the purpose of mathematical completeness, higher order of modified Bessel functions 
are given in the next section. 

General Forms of Bessel Function 

A FORTRAN computer program has been written for the computation of the zero, first, second, and 
third order of the modified Bessel functions. The numerical results are shown in Table 1. The 
corresponding graphical representation is shown in Figure 2.  In general, as the argument of the 
functions increases from zero, the values of the functions increase rapidly for the modified Bessel 
function of the first kind, I ri ( ) , while the values decrease rapidly for the modified Bessel function 

of the second kind, K ri( )  . 

The modified Bessel function of the first kind of order i can be expressed in a general form as 
follows [5], [8]: 
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The modified Bessel function of the second kind of order i can be expressed in  
a general form as follows [5]: 

 
 
 
Table 1. Modified Bessel Functions of the first kind (I) and second kind (K) 

 
    R     I0       I1       I2       I3       K0       K1          K2            K3 
 ------------------------------------------------------------------------------------- 
   .00  1.00000   .00000   .00000   .00000  99999.0  99999.0     99999.0     9999999.0 
   .01  1.00003   .00500   .00001   .00000  4.72124 99.97390 19999.50000 7999901.00000 
   .02  1.00010   .01000   .00005   .00000  4.02846 49.95472  4999.50000  999950.10000 
   .03  1.00022   .01500   .00011   .00000  3.62353 33.27149  2221.72300  296263.00000 
   .04  1.00040   .02000   .00020   .00000  3.33654 24.92329  1249.50100  124975.00000 
   .05  1.00063   .02501   .00031   .00000  3.11423 19.90968   799.50130   63980.02000 
   .10  1.00250   .05006   .00125   .00002  2.42707  9.85385   199.50400    7990.01400 
   .15  1.00563   .07521   .00282   .00007  2.03003  6.47750    88.39669    2363.72300 
   .20  1.01003   .10050   .00502   .00017  1.75270  4.77597    49.51244     995.02470 
   .25  1.01569   .12598   .00785   .00033  1.54151  3.74703    31.51772     508.03050 
   .30  1.02263   .15169   .01133   .00057  1.37246  3.05599    21.74574     292.99920 
   .35  1.03086   .17769   .01547   .00090  1.23271  2.55912    15.85627     183.77370 
   .40  1.04040   .20403   .02027   .00135  1.11453  2.18435    12.03630     122.54740 
   .45  1.05127   .23074   .02574   .00192  1.01291  1.89152     9.41968      85.62198 
   .50  1.06348   .25789   .03191   .00265   .92442  1.65644     7.55018      62.05791 
   .60  1.09205   .31370   .04637   .00460   .77752  1.30283     5.12030      35.43820 
   .70  1.12630   .37188   .06379   .00737   .66052  1.05028     3.66133      21.97216 
   .80  1.16651   .43286   .08435   .01110   .56535   .86178     2.71980      14.46078 
   .90  1.21299   .49713   .10826   .01597   .48673   .71653     2.07903       9.95665 
  1.00  1.26607   .56516   .13575   .02217   .42102   .60191     1.62484       7.10126 
1.10  1.32616   .63749   .16709   .02989   .36560   .50976     1.29244       5.20954 

  1.20  1.39373   .71468   .20260   .03936   .31851   .43459     1.04283       3.91069 
  1.30  1.46928   .79733   .24262   .05081   .27825   .37255      .85140       2.99223 
  1.40  1.55340   .88609   .28755   .06452   .24365   .32084      .70199       2.32653 
  1.50  1.64672   .98167   .33783   .08077   .21381   .27739      .58366       1.83380 
  1.60  1.74998  1.08481   .39397   .09989   .18795   .24063      .48875       1.46250 
  1.70  1.86397  1.19635   .45650   .12223   .16550   .20936      .41180       1.17832 
  1.80  1.98956  1.31717   .52604   .14819   .14593   .18262      .34885        .95784 
  1.90  2.12774  1.44824   .60327   .17820   .12885   .15966      .29691        .78473 
  2.00  2.27959  1.59064   .68895   .21274   .11389   .13987      .25376        .64739 
  2.10  2.44628  1.74550   .78390   .25235   .10078   .12275      .21768        .53738 
  2.20  2.62914  1.91409   .88906   .29763   .08927   .10790      .18736        .44855 
  2.30  2.82961  2.09780  1.00543   .34922   .07914   .09498      .16173        .37626 
  2.40  3.04926  2.29812  1.13415   .40787   .07022   .08372      .13999        .31704 
  2.50  3.28984  2.51672  1.27647   .47437   .06235   .07389      .12146        .26823 
  2.60  3.55327  2.75538  1.43374   .54963   .05540   .06528      .10562        .22777 
  2.70  3.84165  3.01611  1.60750   .63463   .04926   .05774      .09202        .19407 
  2.80  4.15730  3.30105  1.79940   .73048   .04382   .05111      .08033        .16587 
  2.90  4.50275  3.61261  2.01129   .83841   .03901   .04529      .07024        .14217 
  3.00  4.88079  3.95337  2.24521   .95975   .03474   .04016      .06151        .12217 
  3.10  5.29449  4.32620  2.50339  1.09602   .03096   .03563      .05394        .10524 
  3.20  5.74720  4.73425  2.78830  1.24888   .02759   .03164      .04737        .09086 
  3.30  6.24263  5.18095  3.10265  1.42016   .02461   .02812      .04165        .07860 
  3.40  6.78481  5.67010  3.44945  1.61191   .02196   .02500      .03666        .06813 
  3.50  7.37820  6.20583  3.83201  1.82639   .01960   .02224      .03231        .05916 
  3.60  8.02768  6.79271  4.25395  2.06610   .01750   .01980      .02850        .05146 
  3.70  8.73861  7.43574  4.71929  2.33380   .01563   .01763      .02516        .04483 
  3.80  9.51688  8.14041  5.23245  2.63257   .01396   .01571      .02223        .03911 
3.90 10.36894  8.91277  5.79829  2.96581   .01249   .01400      .01966        .03416 

  4.00 11.30190  9.75945  6.42218  3.33727   .01116   .01248      .01740        .02989 
  4.10 12.32355 10.68773  7.11003  3.75111   .00998   .01114      .01541        .02617 
  4.20 13.44244 11.70560  7.86834  4.21194   .00892   .00994      .01366        .02295 
  4.30 14.66795 12.82187  8.70429  4.72486   .00799   .00887      .01211        .02014 
  4.40 16.01041 14.04620  9.62577  5.29549   .00715   .00792      .01075        .01770 
  4.50 17.48114 15.38920 10.64150  5.93008   .00640   .00708      .00955        .01556 
  4.60 19.09259 16.86253 11.76105  6.63553   .00573   .00632      .00849        .01370 
  4.70 20.85842 18.47904 12.99499  7.41946   .00513   .00565      .00754        .01207 
  4.80 22.79363 20.25279 14.35496  8.29032   .00459   .00505      .00670        .01064 
  4.90 24.91473 22.19930 15.85378  9.25743   .00412   .00453      .00596        .00939 
  5.00 27.23982 24.33559 17.50558 10.33112   .00369   .00405      .00531        .00829 
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Modified Bessel Functions of the first kind (I) and second kind (K)
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     Figure 2. Modified Bessel Functions of the First Kind ( Ii ) and Second Kind ( Ki )
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The complete mathematical expressions for the first, second, and third order modified Bessel 
function are given in the following: 

For i=1: 
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For i=2: 
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For i=3: 
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Temperature Computation 

With the FORTRAN program for the numerical evaluation of the Bessel functions available at this 
point, a second FORTRAN program is prepared for the computation of the temperature variation in 
the core-and-coil assembly. In this program, the axial position, i.e., the z-coordinate, is divided into 
ten equal divisions, and for each axial position, the radial-coordinate, from the inner radius r1  to the 

outer radius r2 , is divided into ten equal distances. A typical numerical output is shown in Table 2. 
Figure 3 is a graphical display of the temperature profiles. The parameter used in the diagram is 
the axial coordinate z . As it is expected physically, the temperature decreases from the inner 
surface of the core-and-coil assembly to its outer surface, where the heat is dissipated by the cooling 
fluid to the tank. Also, at a given radial location, the temperature is the highest at the mid-point of 
the axial direction, and it decreases gradually to the top and bottom surfaces. 
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 K=  200.00(W/m-C)   QE= 4000000.(W/m**3)   T2=  50.00(C)   R1= .0900(m) 
 R2=  .1800(m)       Z=  .0000(m)           H=  .3000(m)    RA= .090000(m) 
 
 R=  .090000(m)   Z=  .00000(m) 
         R (m)      T (C) 
        .090000     50.00 
        .099000     50.00 
        .108000     50.00 
        .117000     50.00 
        .126000     50.00 
        .135000     50.00 
        .144000     50.00 
        .153000     50.00 
        .162000     50.00 
        .171000     50.00 
        .180000     50.00 
 
 R=  .090000(m)   Z=  .03000(m) 
         R (m)      T (C) 
        .090000     78.11 
        .099000     77.84 
        .108000     77.06 
        .117000     75.79 
        .126000     74.02 
        .135000     71.74 
        .144000     68.89 
        .153000     65.42 
        .162000     61.20 
        .171000     56.14 
        .180000     50.04 

Table 2. Typical Output for Temperature Computation 
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Figure 3. Temperature as a Function of Radial Coordinate, with Axial Coordinate as Parameter 
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Isothermal Lines in the Coil
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Figure 4.  The Isothermal Lines in the Coil Structure 

Figure 4 displays the isothermal lines in the coil structure.  The boundary conditions specify the 

top, the bottom, and the outside surfaces to be all at a temperature of 50 oC . From these surfaces, 
heat is carried away by the cooling oil through natural convection. The temperature is the highest 
at the axial center point (i.e., a circular line) of the inner surface, where the axial coordinate is 

Z=15.0 cm, and the radial coordinate is R=9.0 cm. The maximum temperature is T=108.47 oC . 
From this point, the temperature decreases both in the axial and radial directions.   

Summary 

On the study of the temperature variation in the core and coil of a distribution transformer, the 
two-dimensional analysis indicates that the mathematical solution can be expressed in terms of the 
product of infinite series and transcendental functions. The infinite series are the modified Bessel 
functions, and the transcendental functions are the trigonometric functions. Using computer 
programs developed in the present study, the numerical results can be obtained by the summation 
of successive terms in the solution, until a term is reached where the numerical value is very small, 

such as 1 10 6× − , so that any following terms can be dropped. Within the cylindrical shell of the coil 
assembly, the numerical results show that the temperature is the highest at the axial center point 
(i.e., a circular line) of the inner surface. From this location, the temperature decreases both in the 
axial and radial directions. 
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