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Abstract – Traditionally, the goals of engineering laboratory instruction have been to introduce the students to the 
use of various measurement devices along with the associated methods to interpret the results in the context of 
experimental uncertainties.  There is usually an emphasis on the demonstration of fundamental engineering 
principles in applications-oriented projects.  Often, theoretical engineering models are used to compare predicted 
outcomes with the experimental results in order to demonstrate the appropriateness and/or limitations of the 
theoretical model.  When making these comparisons, the uncertainty associated with the experiment measurements 
is usually included; however, there is usually no consideration of the uncertainty associated with the theoretical 
model calculations.  Students in the Mechanical Engineering (ME) program at Mississippi State University (MSU) 
are applying the concept of engineering model validation using uncertainty analysis into the undergraduate 
laboratories in addition to graduate research projects.  In this paper, experiences are discussed which illustrate how 
this approach has been implemented into the undergraduate laboratory classes.  The methodology is developed for 
the model validation, and a case study from our senior mechanical engineering laboratory is presented which 
illustrates how the uncertainty of the model is combined with the experiment results to provide a comparison.   
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BACKGROUND 
At MSU, this model validation approach was first implemented into the ME undergraduate laboratory program to 
provide a bridge between the theoretical aspect of the traditional engineering courses and the practical 
demonstration of these principles through experimentation.  An appreciation of the errors inherent in experimental 
results is critical, and uncertainty analysis concepts are integrated into the curriculum in an effort to quantify the 
validity of the test data.  This process provides a logical methodology to interpret test results through the application 
of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting 
phases of experiments [1].  Accuracy of the experiments is investigated along with the appropriateness of a theory 
or model and its simplifying assumptions.  This concept is an extension of the verification and validation research 
that is currently being done for CFD and other computational design codes [2,3].  The approach is communicated at 
the undergraduate level through a three-laboratory sequence consisting of Experimental Orientation (EO), 
Experimental Techniques I (ET I), and Experimental Techniques II (ET II). 
 
In the undergraduate curriculum, EO gives the students an introduction to the use of instrumentation for basic 
measurements, to the acquisition and processing of the measurement data, and to the concept of uncertainty 
associated with the instrumentation selection and the measurement process.  The second course in the sequence, 
ETI, concentrates on identification of the key parameters needed to guide the design of experiments using 
uncertainty analysis.  These concepts merge into ETII, which provides the opportunity for students to combine the  
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knowledge gained in both EO and ETI to compare theoretical predictions with the measured outcome.  The 
complete description of these courses has been presented elsewhere [4]. 
 
For the undergraduate ETII class, students select from a range of mechanical systems.  Some of the systems are 
based on potential classroom demonstration units such as a pump test stand, a tensile test machine, or a heat 
exchanger apparatus.  The mechanical system can also be applied to modeling the physics of games such as 
predicting variability in the ultimate trajectory of softballs, water rockets, or golf balls.  Or the mechanical systems 
can be chosen to augment ongoing research projects to explore the application of uncertainty analysis in the 
understanding of the experimental results and associated engineering models. 
 
In the next section, some experiences from the ETII laboratory at MSU are summarized to show the application of 
model validation using experimental data.  Following this section, the methodology of model validation is given 
along with an example. 

EXPERIENCES 
One of the ETII projects considered the prediction and measurement of the efficiency of a residential gas furnace.  
The students developed an energy balance model for the system that included the air temperature difference from 
the inlet to the exit, the air flow rate, and the natural gas flow rate and heat input.  The air temperatures were 
measured with thermocouples, the air flow was measured with a volumetric flow meter, the gas flow rate was 
measured with an orifice, and the gas heating value was found from standard tabulated values.  The uncertainty of 
each of these inputs was used with the model expressions to find the uncertainty of the model predictions.   
 
The efficiency was measured directly with a flue gas analysis device.  The initial comparisons of the measured and 
predicted efficiencies were not good, but the uncertainty for the model was high.  The controlling variable for the 
model uncertainty was the exit temperature.  The students modified the exit temperature measurement from a single 
thermocouple to a thermocouple grid to better determine the average air exit temperature with less uncertainty.  This 
improvement gave good comparisons of the predicted and measured efficiencies considering the uncertainties of 
both. 
 
Another ETII experiment was the use of an alternating fatigue device to determine the fatigue life of Aluminum 
6061 T-6 for various stress levels.  The engineering model for this test was the standard stress versus number of 
cycles to failure fatigue chart for this material.  The initial comparison of the test and model results for this 
experiment was poor.  The values of stress for the test were estimated based on the displacement of the specimen 
and on the specimen dimensions.  This approach led to reasonably large uncertainty values for the stress.  Also, the 
number of cycles to failure was determined with a mechanical counter, which had an uncertainty of 5%.  An 
improvement to the test was made by gluing a strain gage to the specimen and by using a computer data acquisition 
system to monitor the strain (stress) during the test and to measure the number of cycles to failure.  This improved 
test procedure yielded results with less uncertainty that agreed well with the published data. 

In the next section, we present the methodology for using the uncertainty of test results and engineering model 
predictions to determine the model validity.  Following the methodology, we give a detailed example of another 
ETII experiment. 

METHODOLOGY 
Some of the previous work related to the application of uncertainty analysis in undergraduate engineering laboratory 
courses is documented in References 1,4,6-9.  These efforts have been directed primarily toward quantifying the 
uncertainty of the result of the experiment.  The methodology for applying uncertainty analysis to the experimental 
result is summarized below, where the nomenclature has been updated to reflect the latest accepted version. 
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In nearly all experiments, the measured values of different variables are combined using a data reduction equation 
(DRE) to form some desired result.  A general representation of a data reduction equation is 
 

( J21 X,...,X,Xrr = )      (1) 

 
where r is the experimental result determined from J measured variables Xi.  Each of the measured variables 
contains systematic (fixed) errors and random (varying) errors.  These errors in the measured values then propagate 
through the DRE, thereby generating the systematic and random errors in the experimental result, r.  Uncertainty 
analysis is used to estimate the random and systematic standard uncertainties of the result, sr and br, respectively, 
and the corresponding expanded uncertainty of the result, Ur. 
 
If it is assumed that the degrees of freedom for the result is large (>10), which is very appropriate for most engineering 
applications, then the "large sample assumption" [6] applies and the 95% confidence expression for Ur is 
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The systematic standard uncertainty of the result is defined as 
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The systematic standard uncertainty estimate for each Xi variable is the root-sum-square combination of its 
elemental systematic standard uncertainties 
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where M is the number of elemental systematic standard uncertainties for Xi and where each  is the standard 

deviation level estimate of the systematic uncertainty in variable X
jib

i resulting from error source j.  The standard 
deviation level systematic uncertainty estimate for an error source is usually made by making a 95% confidence 
estimate of the limits of the error for that source and dividing that estimate by 2 [6].  The second term in Eq. (3) 
accounts for systematic errors that have the same source and are correlated.  The factor bik is the covariance term 
appropriate for the systematic errors that are common between variables Xi and Xk and is determined from [10] as 
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where variables Xi and Xk share L identical systematic error sources.  The random standard uncertainty of the result is 
defined as 
 

 sθ = s 2
i
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r ∑         (7) 

 
where si is the sample standard deviation for variable Xi  (sample standard deviation of the mean if Xi is a mean 
value or sample standard deviation if Xi is a single reading).    
 
This same basic methodology can be applied to the engineering model in order to estimate the uncertainty 
associated with the calculated result from the model.  The engineering model has input values that have 
uncertainties.  These uncertainties cause an uncertainty in the calculated result.  The model may also have an 
uncertainty based on how well it matches the physics of the experiment.  This additional uncertainty cannot be 
estimated prior to the validation process and is therefore the primary reason for doing a validation study on the 
engineering model. 

 
Considering the model result, m, to be a function of K input values, Yi, as indicated by Eq. (8) 
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the uncertainty of the model result would then be determined from the uncertainty propagation equation [6] as 
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where θk is the derivative of the model with respect to each input quantity Yi and the sk and bk factors are the 
random and systematic standard uncertainties for the model input variables.  Note that property values and empirical 
coefficients will have uncertainties as well as the input variables. 
 
In order to determine the validation of the model with respect to the result of the experiment, r, a comparison error, 
E, is defined as 
 
     mrE −=      (10) 
 
The uncertainty associated with this comparison error is 
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The basic concept in the validation process is a comparison of E and UE.  If E is less than UE, then the comparison 

is within the noise level of the uncertainty, and the level of validation of the model is UE.  If E  is much larger than 

UE, then there is probably justification for improving either the selection of the governing equations for the model 
or the initial simplifying assumptions [3].  In this case, the sign of E gives some indication of the needed correction 
to the model. 
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Another benefit of the validation process is the determination of how each of the sources of uncertainty affects the 
uncertainty of the comparison error.  The uncertainty percentage contribution, UPC, for each error source is 
determined as 
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where the sum of all of the UPC’s is 100%.  The factors in Eq. (12) come from Eqs. (3), (7), (9), and (11).  These 
parameters show the percentage contribution that each error source has on the square of the total uncertainty of the 
comparison error.  A review of the UPC’s will identify which uncertainties are controlling the total uncertainty and 
which uncertainties are having a negligible effect on the total uncertainty.  This information can be used to identify 
where improvements need to be made in the uncertainties of the experiment variables or in the model input 
variables in order to reduce the magnitude of the uncertainty of the comparison error. 
 
In the next section, the validation process is illustrated with an example experiment from the ME laboratory course 
at MSU. 

EXAMPLE 
One assignment for an ETII team was to experimentally and theoretically determine the head loss, h, for a straight 
section of a plastic pipe.  The flow apparatus is shown in Figure 1.  Pressure differentials across both the orifice 
plate flow meter and the straight pipe section were measured using a manometer and a differential pressure 
transducer, respectively.   
 
For the experiment, the result was the measured head loss in the pipe, ∆hpr, over a range of flow rates.  For the 
engineering model, the following expression was used to predict the pipe head loss, ∆hpm,  
 

     
( )[ ]

52

25.0

m dπg
ho∆CL8fhp∆ =      (13) 

 
where L is the length of the pipe, C is the orifice flow coefficient, ∆ho is the orifice head loss, g is the acceleration 
of gravity, d is the pipe diameter, and f is the friction factor.  The Haaland relationship [11] was used for the friction 
factor 
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where ε is the roughness of the pipe and Red is the Reynolds number based on the pipe diameter 
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where ρ is the water density and µ is the water viscosity. 
 
The values for all of the variables associated with the experiment and the engineering model are given in Table 1.  
All head values are in terms of inches of water.  Also given in the table are the uncertainty estimates for each 
variable. 
 
The systematic standard uncertainty for the pipe head loss came from the combination (using Eq. (5)) of the 
elemental systematic standard uncertainties for the pressure transducer of 0.1 in. for zero shift and 0.1 in. for the 
calibration curve fit.  The random standard uncertainty for the pipe head loss was based on the standard deviation of 
the mean for the 36 readings made with the pressure transducer for each run.  This value was nominally constant for 
each run, so the same value was used for all runs. 
 
The orifice head loss systematic standard uncertainty was based on the accuracy of the manometer used for these 
measurements.  The random standard uncertainty was estimated from the variation of the water column during 
readings.  The typical variation was about ±4 mm yielding an estimate of the standard deviation of ±2 mm or 0.08 
in. 
 
The systematic standard uncertainty estimates for the length and diameter were based on the devices used to make 
the measurements, a scale and a micrometer, respectively.  The orifice was calibrated prior to running the 
experiment using a catch basin of known volume.  The systematic standard uncertainty for the flow coefficient is 
the standard deviation of the mean for the calibration process. 

 
The pipe wall was relatively smooth; however, considering the variation in relative roughness estimates near the 
smooth wall limit, this value could be uncertain by as much as 50% with 95% confidence.  The water density and 
viscosity were based on tabulated values at the water temperature.  The water temperature was about 65°F, but 
possible variation in the water temperature of ±5°F led to uncertainty estimates of 7% for the water viscosity and 
0.3% for the density, both at 95% confidence.  The systematic standard uncertainty estimates for these three 
variables were taken as one-half of the 95% confidence estimates. 
 
The results for each run for both the experiment and the engineering model are given in Table 2.  The Reynolds 
number range for this test was 22,000 to 48,000, and the pipe head loss varied from 5 to 20 inches of water over this 
range.  The comparison of the measured and predicted pipe head loss values is given in Figure 2.  The comparison 
looks very good, but uncertainties should be taken into account in order to validate the model.  This validation 
comparison is shown in Figure 3, where the comparison error, E, (from Eq. (10)) is plotted along with the 
uncertainty in the error, UE, (from Eq. (11)).  For this test, E  was less than UE for all runs; therefore, the model is 

validated at the level of UE for this pipe diameter and smoothness over this range of Reynolds numbers.  The 
validation uncertainty varies from 0.43 in. at the low Reynolds number end to 0.75 in. at the upper end. 
 
This level of validation is based on the uncertainties of the experiment result and the model input variables.  An 
investigation of the UPC’s for each of the error sources will show which uncertainties are dominating the 
determination of the error uncertainty.  Table 3 gives the UPCs for the two limits of the Reynolds number range for 
the test.  At the lower Reynolds number, the systematic standard uncertainty of the pipe head loss measurement 
dominates UE.  To reduce this uncertainty, a better transducer would be needed that had less zero shift and a more 
linear calibration curve.  The random standard uncertainty of the orifice head loss measurement also is significant at 
the low Reynolds number limit.  To improve this uncertainty, a stable and well calibrated pressure transducer could 
be used to make the measurement.  At the higher Reynolds number, the orifice flow coefficient uncertainty 
dominates UE.  To reduce this value, a better calibration of the orifice would have to be performed.  If these three 
uncertainties were reduced, then there would be less uncertainty in both the experiment and the model, and the 
uncertainty in the error would be less.  Then the comparison range for E would be smaller, but it is very likely that 
improved pressure transducers and a better orifice calibration would reduce the comparison error.  
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CONCLUSION 

Understanding the limitations of physical models is key to the successful practice of engineering.  In the ETII 
laboratory in ME at MSU, the students are given an opportunity to investigate the validity of models by comparing 
the predictions with experimental results.  The uncertainty of both the model and experiment results are used to 
assess the model validity and to identify ranges where different or improved models are needed or to show that 
improved variable uncertainties are needed to reduce the validation uncertainty. 
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Figure 1.  Fluid Friction Apparatus 
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Table 1.  Variable Values and Uncertainty Estimates 

 

Variable Value Systematic Standard 
Uncertainty 

Random Standard 
Uncertainty 

pipe head loss (∆hpr) Variable 0.141 in 0.04 in 

orifice head loss (∆ho) Variable 0.05 in 0.08 in 

pipe length (L) 39.125 in 0.031 in - 

pipe diameter (d) 0.697 in 0.00025 in - 

flow coefficient (C) 11.45 in 2.5/sec 0.089 in 2.5/sec - 

roughness (ε) 3.6X10-6 in 25% - 

water density (ρ) 999 kg/m3 0.15% - 

water viscosity (µ) 1.056X10-3 Nsec/m2 3.5% - 
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Table 2.  Test Results 

Run Orifice 
Head 
Loss 

 
(in) 

Red Pipe Head 
Loss  

Measured 
∆hpr 
(in) 

Data 
Uncertainty 

Ur 

(in) 

Pipe Head 
Loss from 

Model, 
 ∆hpm 
(in) 

Model 
Uncertainty 

 
Um 
(in) 

Comparison
Error 

 
E 

(in) 

Comparison 
Error 

Uncertainty 
UE 

(in) 

1 3.14 22,623 5.38 0.29 5.14 0.32 0.24 0.43 

2 4.13 25,946 6.48 0.29 6.54 0.34       -0.06 0.45 

3 5.94 31,116 9.32 0.29 9.00 0.39 0.32 0.49 

4 6.02 31,325 9.17 0.29 9.11 0.40 0.06 0.49 

5 7.40 34,730 11.25 0.29 10.93 0.44 0.32 0.53 

6 8.62 37,484 12.64 0.29 12.51 0.48 0.13 0.56 

7 8.78 37,830 13.00 0.29 12.71 0.49 0.29 0.57 

8 10.0 40,373 14.71 0.29 14.26 0.53 0.45 0.60 

9 10.3 40,974 14.70 0.29 14.64 0.54 0.06 0.61 

10 11.4 43,106 16.35 0.29 16.02 0.58 0.33 0.65 

11 12.7 45,498 17.88 0.29 17.62 0.63 0.26 0.69 

12 13.0 46,032 18.38 0.29 17.99 0.64 0.39 0.70 

13 14.3 48,279 19.93 0.29 19.58 0.69 0.35 0.75 
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Table 3.  Uncertainty Percentage Contributions 
 

Reynolds Number 

22,623 48,279 

 

 

Variable Systematic 
Standard 

Uncertainty 

Random 
Standard  

Uncertainty 

Systematic 
Standard 

Uncertainty 

Random 
Standard  

Uncertainty 

pipe head loss (∆hpr) 42.6  3.4 15.1 1.2 

orifice head loss (∆ho) 11.0 28.1   2.8 7.1 

pipe length (L)  0.0 -   0.2 - 

pipe diameter (d)  0.2 -   0.8 - 

flow coefficient (C) 10.5 -  54.9 - 

roughness (ε)  0.0 -    0.0 - 

water density (ρ)  0.0 -    0.0 - 

water viscosity (µ)  4.2 -  17.9 - 

                                                Sum = 100.0 Sum = 100.0 
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