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A Unified Approach to Piping System Problems 
B. K. Hodge1 

Abstract – A unified approach to the solution of series, parallel, and network piping system problems is 
investigated.  Examples of series, parallel, and network piping system solutions using a unified solution methodology 
are presented and discussed.  Solutions for all piping problems are formulated as a single nonlinear algebraic 
equation or as a system of nonlinear algebraic equations and a computational software system (Mathcad in this 
paper) is used for the arithmetic.  This arrangement permits the student to concentrate on problem formulation and 
results (the engineering aspects of the problems) rather than on the arithmetic.  The congruence of the problem 
formulations for all problems is evident to the student.  

 Keywords:  Piping Systems, Piping Networks 
 

INTRODUCTION 
 
Many of the “procedures” for solving engineering problems are formulations to solve a non-linear algebraic equation 
or a system of non-linear algebraic equations.  However, recent computational software systems, such a Mathcad and 
EES, have made possible “direct” solutions of such non-linear problems in which the solution procedure is 
transparent to the user.  Piping systems are an excellent example of such problems.  The purposes of this paper are 
twofold: (1) to explore the effects of the use of a computational software system for piping system problem solutions 
and (2) to investigate the pedagogical inferences of the use of such software in undergraduate engineering education 
involving piping system topics. 
 
 

BACKGROUND 
 
Most undergraduate courses in fluid mechanics address the flow of viscous fluids in pipes and develop techniques 
suitable for the solution of simple piping system problems.  Piping systems are characterized as series, parallel, or 
network.  Generally, piping systems with components in series are examined first and solutions are classed as 
Category I (find the increase in head of a pump), Category II (find the flow rate in a system), and Category III (find 
the appropriate pipe diameter, if it exists, for a given situation).  Most first courses in fluid mechanics do not contain 
detailed coverage of parallel systems or fluid networks.  In a first course, or in a follow-on fluid mechanics or 
thermal systems course, if solution techniques for parallel systems and fluid networks are covered, the solution 
“procedures” are associated with, but are considered distinct from, series systems.  The advent of computational 
software systems (for example Mathcad, Mathematica, Matlab, and EES) permits a much more unified solution 
approach to all types of piping system problems.  From a pedagogical standpoint, the unified approach permits the 
student to focus more on the engineering aspects than the arithmetic aspects, and from an applications standpoint, the 
unified approach provides the student with a useful addition to the student’s engineering skill set.  
 
No matter what the characterization (series, parallel, or network) of a piping system, the same fundamental principles 
are used in the unified solution formulation.  The fundamental principles are delineated as follows: (1) conservation 
of mass, (2) conservation of energy, and (3) uniqueness of pressure at a point.  The conventional solution 
“procedures” developed for any characterization of piping problem satisfy these principles either by formally 
invoking them as part of the problem formulation or by using them in a specified iterative sequence—the 
“procedure.”  Solutions for all series, parallel, and network piping problems can be formulated as a solution to a non-
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linear equation or to a system of nonlinear algebraic equations.  The aforementioned computational software systems 
contain robust options for the solutions to systems of nonlinear algebraic equations.  The computational system then 
becomes the arithmetic engine for the solution, and the student can concentrate on problem formulation and results 
(engineering aspects of the problems) rather than on the arithmetic.  The results are better mastery of piping system 
problems, exposure to more realistic problems, and a graduate better equipped to handle meaningful piping 
problems.  The congruence of the problem formulations for all problems is evident to the student. 
 
The unified approach to piping systems uses the energy equation (Hodge and Taylor, 1999), cast between two 
stations in a pipe with a flowing fluid as a fundamental building block.  Consider, as in Figure 1, the flow of an 
incompressible fluid through a segment of a pipe with an active device (pump or turbine) and major and minor 
losses.  For this pipe segment with a pump, the energy equation becomes 
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where sW  is the increase in head of the pump.  Conservation of mass appears as 
  BA QQQ ==                   (2) 
In Equation (1), expressions for the friction factor and fully-rough friction factor are needed.  In introductory fluid 
mechanics courses, the Moody diagram is often used to present the functional dependence of friction factor, f, on the 
Reynolds number, µρVDD =Re , and the relative roughness, Dε .  However, the Moody diagram is unhandy for 
computer-based solutions, and a closed-form expression is desired.  In the laminar regime, the usual expression is 
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Several different representations are available for turbulent flow.  In this paper the representation of Haaland (1983), 
Equation (4), is used. 
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Minor loss terms are sometimes expressed as equivalent lengths using the fully-rough friction factor, fT, the 
asymptotic value of the friction factor for a given relative roughness.  From the Haaland equation, the fully-rough 
friction factor becomes 
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With the aforementioned as the basis for piping system problem solution formulation, some examples of the unified 
approach will be examined and discussed. 
 
 

EXAMPLES  
 

Examples for series, parallel, and network piping systems will be explored in this section using the unified solution 
approach built around Equations (1) and (2) and the computational software system, Mathcad.  Although Mathcad is 
the computational software system used in this paper, other computational software systems possess the same 
capability and could be used equally well. 
 
Series Examples 
 
Example 1 Problem Statement: 
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Water is to be pumped at the rate of 50 gpm from a lake to a storage tank.  The free surface of the tank is 30 ft above 
the free surface of the lake.  The pipe is 115 ft long, is constructed of schedule 80 pipe, and contains two 45-degree 
elbows and three 90-degree elbows.  Find the increase in head of the pump and the power the pump delivers to the 
fluid. 
 
Solution: 
A schematic of the system is presented in Figure 2.  The energy equation for the system becomes 
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The minor losses are the entrance, the elbows, and the exit.  Since A and B are located at free surfaces open to the 
atmosphere, PA = PB and VA = VB = 0.  The energy equation thus reduces to the form 
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The determination of the pump increase in head for a specified flow rate is a Category I series piping problem 
solution and can be solved directly.  However, in this paper the generalized approach will be used.  The Mathcad 
worksheet for the solution is provided in Figure 3.  Most of the worksheet contains the specification of the system 
geometry, losses, and fluid properties.  The definition of Reynolds number and functions for the friction factor and 
fully-rough friction factor are provided.  The friction factor definition is piece-wise continuous with different 
expressions for the laminar and turbulent regimes.  Transition is specified to occur at a Reynolds number of 2300.  In 
Mathcad, the Given statement initiates a Solve block, and the Find statement specifies the unknown variable (or 
variables).  In this example, the unknown is the increase in head of the pump, sW .  The solution is 

lbm
lbfftWs

⋅= 009.62 .  This problem is a straightforward example typical of those encountered in a first course in 

fluid mechanics.  Consider a more complex version of this problem. 
 
Example 2 Problem Statement: 
If a pump imparts 2 hp to the fluid in the system of Example 1, what is the flow rate? 
 
Solution: 
This is more complex problem than Example 1.  The reduced energy equation is essentially the same as Equation 
(7b) for Example 1.  That portion of the Mathcad solution that differs from the solution of Example 1 (Figure 3) is 
given in Figure 4.  The only difference is in the Solve block structure where two equations and two unknowns are 
specified.  The additional equation is the definition of the power to the fluid.  While Example 1 is simple and could 
be solved directly, Example 2 requires iteration.  The flow rate that results in 2 hp being delivered to the fluid is 
76.559 gal/min with a required pump increase in head of 103.346 ft-lbf/lbm.  As confirmation of the accuracy of the 
solution, the power delivered to the fluid is computed from the solution results and is 2 hp as specified.  This would 
be a challenging problem to work “by hand,” but the unified approach is logical and straightforward.  As in Example 
1, the engineering aspect of the problem is in the formulation as a nonlinear system of two equations, but the solution 
via Mathcad is the same as for the simpler example and is transparent to the user. 
 
Parallel Example 
 
Example 3 Problem Statement 
A parallel piping system, schematically illustrated in Figure 5, is to be analyzed.  Table 1 presents characteristics of 
the two pipes in the parallel system.   
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Table 1.  Pipe Characteristics for Parallel System 
 

 Pipe  L (ft)  D(in)  K  C  ε(ft) 
 
   1  3000    12  2  50  0.01    
   2  3000      8  1             100           0.0001 
 
Oil with physical properties of 64.32 lbm/ft3 and a viscosity of 0.00193 lbm/ft-sec is the fluid, and ZA

 = 100 ft and ZB
 

= 80 ft.   If a pump with an increase in head of 50 ft-lbf/lbm is placed in the system and if the pressure at A is to be 
the same as at B, find the total system flow rate and the flow rates in the individual pipes.  
  
Solution: 
The formulation of the system of equations for the solution invokes the behavior of a parallel system—namely, the 
flow rates add and the changes in head across each parallel line segment must be the same (uniqueness of pressure).  
Conservation of mass for this parallel system becomes 
  21 QQQT +=                   (8) 
And the head change from A to B for a parallel pipe segment can be expressed using the energy equation as 
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For a system composed of two parallel lines, three equations, one conservation of mass and an energy equation for 
each line, are required.  For this system, the increase in head of the pump is given, so the unknowns are the flow 
rates, QT, Q1, and Q2. 
 
The Mathcad worksheet for the solution of this parallel problem is given in Figure 6.  The format is similar to 
Examples 1 and 2.  Pipe parameters, fluid properties, and expressions for the Reynolds number and friction factors 
are provided, and the solution is obtained via a Solve block.  The three equations discussed above are in the Solve 
block, and the results are obtained using the Find statement.  The same principles were used in formulating the 
solution to this parallel problem as were used to formulate the solutions of the series problems.  Once the parallel 
problem was formulated, the Solve block and the Find statement were used to obtain the solution. 
 
Network Example 
 
Example 4 Problem Statement 
A piping network composed of seven lines and two loops is illustrated in Figure 7(a).  Characteristics of the pipes are 
provided in Table 2, and the fluid is water.  Find the flow rate in each line of the piping network. 
 

Table 2.  Pipe Characteristics for Network System 
 

 Pipe  L (ft)  D(in)  K  C  ε(ft) 
 
   1  2000  12  0  0        0.00015 
                2  2000    8  0             0        0.00015 

  3  3000    6  0  0        0.00015 
   4  4000    6  0  0        0.00015 
   5  1000    8  0  0        0.00015 
   6  3000    8  0  0        0.00015 
   7  2000    8  0  0        0.00015 
 
Solution: 
Network problems, such as this one, can be solved by the Hardy-Cross procedure (Hodge and Taylor, 1999).  
However, the Hardy-Cross procedure, which is formulated using the aforementioned principles, introduces a loop-
correction factor that is used in a Newton-Raphson iterative procedure.  An alternative to the Hardy-Cross procedure 
is to implement directly the three principles delineated in the Background segment of this paper. 
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As illustrated in Figure 7(a), the network is composed of six nodes, seven pipes, and two loops.  Conservation of 
mass must be enforced at each node, and the energy equation must hold for each pipe.  Uniqueness of pressure 
requires that the sum of the changes in pressure (or head) around each loop be zero.  For this example, the  
unknowns are the seven flow rates (Q1….Q7).  The system of equations required for the solution to this network 
must, therefore, contain seven equations.  The seven equations are five conservation of mass expressions and two 
uniqueness of pressure statements.  Conservation of mass expressions can be written for all six nodes, but only five 
of the expressions will be independent.  Initial guesses on all flow rates are needed for the Solve block.  The initial 
guesses do not have to satisfy conservation of mass at each node, but the ones used in this example do.  The 
conservation of mass statement at each node must have the total inflow equal to the total outflow at a node.  Suitable 
conservation of mass expressions for the initial flow rate directions are as follows: 
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The major and minor head losses in a pipe segment can be expressed in functional form as 
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where QQ  carries the sign convention (a positive flow rate yields a positive head loss).  For loop 2, the sum of the 
head changes around the loop must equal zero or 
     ( ) ( ) ( ) ( ) 0,,,,,,,,,,,,,,,, 11111777776666655555 =−−+ DLCKQhDLCKQhDLCKQhDLCKQh         (12) 
Equations (10) and (12) plus the analogous equation for loop 1 constitute the system of equations needed to describe 
the system.  Figure 8 presents the Mathcad work sheet implementing the solution to this network problem.  The pipe 
characteristics are defined and the Reynolds number and the friction factors expressions are presented.  The minor 
loss coefficients vectors, K and C, are indicated.  But as with the series and the parallel systems, the problem solution 
is accomplished by the Solve block—in this example the Solve block contains seven equations.  The solution is 
provided by the Find statement and in given in Figure 8 and illustrated in Figure 7c.  The flow rate is line 2 was 
guessed as being clockwise in loop 1, but the solution shows the flow rate in line 2 to be counterclockwise in loop 1.  
The use of QQ  in the energy equation expressions provides the capability of the system of equation to handle flow 
rates initially guessed to be in the wrong direction.  The Solve block in this network problem contains seven 
equations and is, thus, more complicated than the Solve block of the previous examples, but the same principles were 
used in formulating the equations in the Solve block. 
 
 

PEDAGOGICAL INFERENCES 
 

The purpose of this paper is to discuss a unified method of solving piping problems.  In all the examples explored in 
this paper, the same three principles were used in formulating an equation or a system of equations for the solution.  
In most undergraduate courses, the treatments of series, parallel, and network problems are distinct and emphasize 
the arithmetic sequence required to solve the equation or equations formulated as the problem solution.  In this paper 
attention has been directed to formulating the solutions to series, parallel, and network problems, but the arithmetic 
has been accomplished by using the Solve-Find structure of Mathcad.  Other computational software systems 
(Mathematics, Matlab,….) offer the same capability, albeit in different formats, but with the same results.  
  
Anecdotally, students appreciate the attention to problem formulation using the three principles built around 
statements of conservation of mass and energy and uniqueness of pressure at a point.  The use of Mathcad with its 
Solve-Find structure relieves the student from assimilating different numerical techniques (“procedures”) to solve a 
non-linear equation or a system of non-linear equations.  The net result is that more involved and more realistic 
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problems can be assigned.  With less time spent on arithmetic, more time is available for students to engage is 
higher-level synthesis and understanding. 
 
 

CONCLUSIONS 
 
Examples illustrating a unified approach to solutions of series, parallel, and network piping problems have been 
presented and discussed.  Pedagogical aspects of using a unified approach for the solution of piping problems are 
examined.  The unified approach offers advantages in providing students with capability to solve more “real world” 
problems and to engage in higher order activities. 
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Figure 1.  Pipe Segment Schematic 
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Figure 2.  Example 1 Schematic 
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ORIGIN 1≡  Set origin for counters to 1 from the default value of 0. 
Input the pipe geometry: 
      Diameter in inches           Length in feet            Roughness in feet: 

           
D

1.5

1.5








in⋅:=
               

L
15

100








ft⋅:=
              

ε
0.00015

0.00015








ft⋅:=  

Input the system boundary (initial and end) conditions, the loss coefficients, and the fluid propeties: 
          Pressures in psi              Elevations in feet: 

Pa

Pb









0

0








lbf

in2
⋅:=

 

Za

Zb









0

30








ft⋅:=
  

 

              K factor                    Equivalent length  Number of pipes 

K
0.78

1








:=
  

C
32

90








:=
    

N length D( ):=  

       Density in lbm/ft3          Viscosity in lbm/ft-s 

ρ 62.4
lb

ft3
⋅:=

  

µ 0.000658
lb

ft sec⋅
⋅:=  

Input the flow rate in cfs: Q 50
gal
min

⋅:=  

Define constants and adjust units for consistency:   g 32.174
ft

sec2
⋅:=

 

gc 32.174
ft lb⋅

lbf sec2⋅
⋅:=  

Define the functions for Reynolds number, fully-rough friction factor, and friction factor: 

Re q d,( )
4 ρ⋅ q⋅
π d⋅ µ⋅

:=
 

fT d ε,( ) 0.3086

log
ε

3.7 d⋅








1.11







2
:=  

f q d, ε,( ) 0.3086

log
6.9

Re q d,( )
ε

3.7 d⋅








1.11
+









2
Re q d,( ) 2300>if

64
Re q d,( )

otherwise

:=  

Ws 100 ft⋅
lbf
lb

⋅:=
 
(Initial guess of pump increase in head.) 

Given 

Ws
gc

g
⋅

Pb Pa−

ρ g⋅
gc⋅ Zb+ Za−

1

N

i

8

π
2

Q2

g Di( )4⋅
⋅ f Q Di, εi,( )

Li

Di
⋅ Ki+ Ci fT Di εi,( )⋅+









⋅∑
=

+  

Ws Find Ws( ):=   Ws 62.009ft
lbf
lb

⋅=  

Pump power (input to fluid): Power Q ρ⋅ Ws⋅:=   Power 0.784hp=  
 

Figure 3.  Mathcad Worksheet for Example 1 
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Ws 10 ft⋅
lbf
lb

⋅:=
  

Q 50
gal
min

⋅:=
 

(Initial guesses of pump increase in head and flowrate.) 

Given 
2 hp⋅ ρ Q⋅ Ws⋅  

Ws
gc

g
⋅

Pb Pa−

ρ g⋅
gc⋅ Zb+ Za−

1

N

i

8

π
2

Q2

g Di( )4⋅
⋅ f Q Di, εi,( )

Li

Di
⋅ Ki+ Ci fT Di εi,( )⋅+









⋅∑
=

+  

Ws

Q









Find Ws Q,( ):=
 

Ws 103.346
ft lbf⋅

lb
=

 
Q 76.559

gal
min

=  

Pump power (input to fluid): Power Q ρ⋅ Ws⋅:=   Power 2hp=   
 

Figure 4.  Mathcad Solve Block for Example 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Parallel System Schematic 
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ORIGIN 1≡  Set origin for counters to1 from default value of 0. 
Input the pipe geometry and the elevation difference, the loss coefficients, and the physical 
properties: 

D
12

8








in⋅:=
 

L
3000

3000








ft⋅:=
 

ε
0.01

0.0001








ft⋅:=
  

Za

Zb









100

80








ft⋅:=  

              K factor           Equivalent length         Number of pipes 

 
K

2

1








:=
       

C
50

100








:=
      

N length D( ):=  

        Density in lbm/ft3                 Viscosity in lbm/ft-s 

         

ρ 64.35
lb

ft3
⋅:=

              

µ 0.00193
lb

ft sec⋅
⋅:=  

Define constants and adjust units for consistency: g 32.174
ft

sec2
⋅:=

 

gc 32.174
ft lb⋅

lbf sec2⋅
⋅:=  

Define the functions for Reynolds number and the friction factors: 

Re q D,( )
4 ρ⋅ q⋅
π D⋅ µ⋅

:=
  

fT D ε,( ) 0.3086

log
ε

3.7 D⋅








1.11







2
:=  

f q D, ε,( ) 0.3086

log
6.9

Re q D,( )
ε

3.7 D⋅








1.11
+









2
Re q D,( ) 2300>if

64
Re q D,( )

otherwise

:=  

Setup Solve Block by defining specified inputs and guessed values: 

QT 5.0
ft3

sec
⋅:=

 
Q1

QT

N
:=

 
Q2

QT

N
:=

 
Ws 50 ft⋅

lbf
lb

⋅:=  

Given  
QT Q1 Q2+  

Ws
gc

g
⋅ Zb Za−

8

π
2

Q1( )2

g D1( )4⋅
⋅ f Q1 D1, ε1,( )

L1

D1
⋅ K1+ C1 fT D1 ε1,( )⋅+









⋅+  

Ws
gc

g
⋅ Zb Za−

8

π
2

Q2( )2

g D2( )4⋅
⋅ f Q2 D2, ε2,( )

L2

D2
⋅ K2+ C2 fT D2 ε2,( )⋅+









⋅+  

QT

Q1

Q2











Find QT Q1, Q2,( ):=  

QT 7.481ft3 sec -1=  Q1 4.839ft3 sec -1=  Q2 2.642ft3 sec -1=  

 
 

Figure 6.  Mathcad Worksheet for Parallel System 
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(a) Network Schematic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Initial Flow Rate Guesses 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Solution 
 

Figure 7.  Network Problem Schematic and Solution 

3 cfs 
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Q4 = 1.2 cfs 

Q5 = 1.0 cfs 

Q6 = 1.0 cfs 
Q7 = 1.0 cfs 

Q1 = 1.866 cfs 

Q2 = 0.762 cfs 
Q3 = 0.238 cfs Q4 = 0.238cfs 

Q5 = 0.896 cfs 

Q6 = 0.896 cfs 

Q7 = 1.104 cfs 

3 cfs 
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2 cfs 
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ORIGIN 1≡   Reset counter to start at 1 rather the default value of 0. 
Input the pipe geometry 

   

L

2000

2000

3000

4000

1000

3000

2000























ft⋅:=

  

Q

0.8

0.2

1.2

1.2

1.0

1.0

1.0























ft3

sec
⋅:=

  

ε

0.00015

0.00015

0.00015

0.00015

0.00015

0.00015

0.00015























ft⋅:=

 

D

12

8

6

6

8

8

8























in⋅:=  

 

Define constants and unit adjustments: g 32.174
ft

sec2
⋅:=  

Define physical properties: ν 0.000016
ft2

sec
⋅:=  

The usual functions for friction factor must be defined: 

Re q d,( )
4 q⋅
π d⋅ ν⋅

:=
 

fT d ε,( ) 0.3086

log
ε

3.7 d⋅








1.11







2
:=  

f q d, ε,( )
0.3086

log
6.9

Re q d,( )
ε

3.7 d⋅








1.11
+









2
Re q d,( ) 2300>if

64
Re q d,( )

otherwise

q 0>if

1 otherwise

:=  

Define the minor loss coefficients K and the equivalent-lengths C: 

K 0 0 0 0 0 0 0( )T:=  C 0 0 0 0 0 0 0( )T:=  
  

Define the loss function for each line using the friction factor major loss expression: 

h Q K, C, L, D,( )
8 Q⋅ Q⋅

π
2

g⋅ D4⋅
f Q D, ε,( ) L

D
⋅ K+ C fT D ε,( )⋅+








⋅:=  

 
 
 

Figure 8.  Mathcad Worksheet for Pipe Network Solution 
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Given  

3
ft3

sec
⋅ Q1 Q4+ Q5+  

Q 1 Q 2+ Q 7 

2
ft3

sec
⋅ Q 6 Q 7+  

1
ft3

sec
⋅ Q 2+ Q 3

 
Q 5 Q 6 
 
h Q4 K4, C4, L4, D4,( ) h Q3 K3, C3, L3, D3,( )+ h Q2 K2, C2, L2, D2,( )+ h Q1 K1, C1, L1, D1,( )− 0 
 
h Q5 K5, C5, L5, D5,( ) h Q6 K6, C6, L6, D6,( )+ h Q7 K7, C7, L7, D7,( )− h Q1 K1, C1, L1, D1,( )− 0 

 
Q Find Q1 Q2, Q3, Q4, Q5, Q6, Q7,( ):=  

 
 

Q

1.866

0.762−

0.238

0.238

0.896

0.896

1.104























ft3

sec
=  

 
 

Figure 8.  Mathcad Worksheet for Pipe Network Solution (Concluded) 
 
 
 
 


