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Abstract

The effect of prismatic joint inertia on dynamics of planar kinematic chains with friction is investigated.
The influence of the prismatic joint inertia on the position of the application point of the joint reaction
forces and on the dynamic response of a planar robot arm with feedback control is analyzed. Larger values
of the initial condition response characteristics are observed for larger values of the slider link inertia. The
numerical simulations reveal that the effect of slider inertia may be negligible at low speeds, but becomes
significant at high speeds.

Introduction

Consideration of dynamic modeling is an important part in the analysis, design and control of mechanical
systems such as mechanisms, robots, manipulators, etc. In general, mechanical systems have several desir-
able features relative to the coupling contact forces such as higher speed, improved mobility and control,
and reduced power consumption. The dynamics of mechanical systems with frictional contacts has been
developed and applied to many industrial applications. Examples in this area include fingered grippers [1]
and manipulators [2]. The contact normal and tangential forces can be determined if the contacts are known
for systems with independent constraints [3]. The contact forces cannot be uniquely determined when the
constraints are not all independent. It has been shown that the initial value problem has no solution or
multiple solutions for some initial conditions [4].
Do and Yang [5] solved the inverse dynamics of the Stewart platform manipulator [6] assuming the joints
are frictionless and the moment of inertia of the legs has not been updated as a function of configuration in
the simulation algorithm for path tracking. Ji [7] considered the question of leg inertia and studied its effect
on the dynamics of the Stuart platform. The dynamic and gravity effects as well as the viscous friction at
the joints were considered for the inverse dynamic formulation of the general Stuart platform presented by
Dasgupta and Mruthyunjaya [8]. Important research related to the subject of the present paper has been
done by Xi, Sinatra, and Han [9]. The authors investigated the effect of leg inertia on dynamic parameters
of sliding-leg hexapods.
The theory presented in this study can be applied to the dynamic modeling of parallel manipulators with
prismatic joints [10]. In general, the moment of inertia of prismatic joints is considered negligible for the
dynamic analysis of kinematic chains. For high speed machine tools, the joint link inertia may become
significant. In the present paper, the influence of the prismatic joint mass moment of inertia on dynamic
parameters of mechanical systems as the application point of the joint contact forces, angular speed of the
links, actuator torques and forces is analyzed. The results presented have direct application for the graduate
courses in Mechanisms and Robotics and can help the students to better understand the dynamic concept
of rigid body inertia.

Mathematical background

The Lagrange’s equations of motion for the planar mechanical system shown in Fig. 1 are derived using
constrained generalized coordinates. The cartesian reference frame xOOyO is chosen. The mobile reference
frame xOy attached to the link 1 is considered. The angle between the axis Ox and OxO is θ. For the links
1 and 2 the masses are m1 and m2, and the center of mass locations are designated by C1 and C2. The
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length of the link 1 is L. The distance OC2 is denoted by r. The coefficient of friction between the links 1
and 2 is µ. The gravitational acceleration g is considered.
The gravitational forces G1 and G2 that act on the links 1 and 2 are

G1 = −m1g (sin θı + cos θ) , G2 = −m2g (sin θı + cos θ) . (1)

The reaction force F12 and the friction force Ff12 exerted by the link 1 to the link 2 can be written as

F12 = N , Ff12 = −µNsign(ṙ)ı. (2)

The reaction force F21 and the friction force Ff21 exerted by the link 1 to the link 2 are

F21 = −F12, Ff12 = −Ff12. (3)

The motion of the slider is expressed using the polar coordinates r and θ. To express the motion of the rod
the angle φ is introduced. One can chose the generalized coordinates q1 = r, q2 = θ, and q3 = φ.
The constraint equation is

θ − φ = 0. (4)

The Lagrange differential equations are

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi, i = 1, 2, 3, (5)

where T is the total kinetic energy and Qi is the generalized force corresponding to qi.
The kinetic energy T1 for the link 1 is

T1 =
1
2
IOω1 · ω1, (6)

where ω1 = φ̇k.
The kinetic energy T2 for the link 2 is

T2 =
1
2
m2vC2 · vC2 +

1
2
IC2ω2 · ω2, (7)

where ω2 = θ̇k and vC2 = ṙC2 + ω2 × rC2 .
The total kinetic energy is

T = T1 + T2. (8)

The velocity vP1 of the point P attached to the link 1 can be written as

vP1 = ω1 × rP1 , (9)

where rP1 = p (cos φı + sinφ).
The velocity vP2 of the point P attached to the link 2 can be written as

vP2 = ω2 × rP2 + ṗı, (10)

where rP2 = p (cos θı + sin θ).
The generalized force Qi for the link i is

Qi =
∂vC1

∂q̇i
·G1 +

∂vC2

∂qi
·G2 +

∂vP1

∂q̇i
· (F21 + Ff21) +

∂vP2

∂q̇i
· (F12 + Ff12), i = 1, 2, 3. (11)

The sum of the moments for the link 2 with respect to C2 is zero

(rP2 − rC2)× F12 − IC2α2 = 0, (12)

where α2 = θ̈k.
One can solve Eq. (12) and find p.

p = r +
IC2

N
θ̈. (13)

From Eq. (5), for i = 3, one can find the reaction force N . From Eq. (5), for i = 1, 2, and by using the
constraint Eq. (4), one can derive and solve the equations of motion.
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Robotic system

The equations of motion for the three-link planar robot arm (Fig. 2) are derived using Kane’s method. The
cartesian reference frame xOOyO is chosen. The mobile reference frame xiOyi is attached to the link i,
i = 1, 2. The robot arm has three degrees of freedom corresponding to the angle q1 between the link 1 and
Ox-axis, the angle q2 between the link 2 and Ox-axis, and the distance q3 = AC3. The links 1 and 2 have
the lengths L1 and L2, the masses m1 and m2, and the mass moments of inertia IC1 and IC2 . The mass and
the mass moment of inertia of the link 3 are m3 and IC3 . The coefficient of friction between the links 2 and
3 is µ. Friction is negligible for the rotational joints. The gravitational acceleration g is considered. The
initial conditions at t = 0 are q1(0) = q10, q2(0) = q20, q3(0) = q30 m, and q̇1(0) = q̇2(0) = q̇3(0) = 0. The
feedback control is implemented using the actuator torques Mc01 and Mc12 applied to the rotational joints
O and A and the actuator force Fc23 acting to the translational joint at A (Fig. 2). The desired final state
of the system is q1 = q1f , q2 = q2f , and q3 = q3f .
The position rCi

of the center of mass Ci, i = 1, 2, 3, is

rC1 =
L1

2
ı1, rC2 =

L2

2
ı2, rC3 = q3ı2. (14)

The angular velocity ωi and angular acceleration αi of the link i is

ωi = q̇iki, αi = q̈iki, i = 1, 2. (15)

The velocities vCi and accelerations aCi of the points Ci can be expressed as

vCi
= ṙCi

+ ωi × rCi
, aCi

= v̇Ci
+ ωi × vCi

. (16)

The reaction force F23 and the friction force Ff23 exerted by the link 2 to the link 3 can be written as

F23 = N 2, Ff23 = −µNsign(q̇3)ı2. (17)

The reaction force F32 and the friction force Ff32 exerted by the link 1 to the link 2 are

F32 = −F23, Ff32 = −Ff23. (18)

The feedback control of the arm is realized using the actuator torques and forces

Mc01 = −[c1q̇1 + c2(q1 − q10)] +
L1

2
m1g cos q1 +

(
L2

2
m2 + q3m3

)
g cos q2,

Mc12 = −[c3q̇2 + c4(q2 − q20)] +
(

L2

2
m2 + q3m3

)
g cos q2,

Fc23 = −[c5q̇3 + c6(q3 − q30)] + m3g sin q2 + µNsign(q̇3), (19)

where ci, i = 1, ..., 6, are constants.
The position of the application point P of the reaction force F23 is

rP = pı2, (20)

where p = q3 +
IC3

N
q̈2.

The velocities vP2 and vP3 of the point P attached to the links 2 and 3 can be written as

vP2 = ω2 × rP , vP3 = ω2 × rP + ṙP . (21)

The relative velocity vP32 between the links 3 and 2 is

vP23 = vP3 − vP2 = ṙP . (22)

One can define the generalized speeds ui = q̇i corresponding to the generalized coordinates qi, i = 1, 2, 3. To
find the reaction force N one can introduce the generalized speed u4 on the direction Ox2 in the expression
of the relative velocity vP23

vP23 = ṙP + u42. (23)
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Thus, the velocities vP3 and vC3 become

vP3 = ω2 × rP + ṙP + u42,

vC3 = ω2 × rC3 + ṙC3 + u42. (24)

The generalized forces Qj associated to the generalized speeds uj can be written as

Qj =
∂vC1

∂uj
·G1 +

∂vC2

∂uj
·G2 +

∂vC3

∂uj
·G3 +

∂ω1

∂uj
Mc01 +

∂(ω2 − ω1)
∂uj

Mc12 +
∂vP23

∂uj
· (F23 + Ff23 + Fc23), j = 1, 2, 3. (25)

The generalized inertia forces Fj can be written as

Fj =
3∑

i=1

∂vCi

∂uj
· (−miaCi

) +
3∑

i=1

∂ωi

∂uj
· (−ICi

αi), j = 1, 2, 3. (26)

One can write Kane equations associated to the generalized speeds uj as

Fj + Qj = 0, j = 1, 2, 3. (27)

From Eq. (27), for j = 4, one can find the reaction force N . From Eq. (27), for j = 1, 2, 3, one can derive
and solve the equations of motion with respect to the generalized co-ordinates q1, q2, and q3.

Results

Simulated results obtained from the three-link planar arm robot shown in Fig. 2 are presented. The lengths
of the links 1 and 2 are L1 = L2 = 0.1 m. The masses of the links 1, 2, and 3 are m1 = m2 = 1 kg, and
m3 = 0.2 kg. The mass moments of inertia of the links 1 and 2 are IC1 = IC2 = 0.01 kgm2. The coefficient
of friction between the links 2 and 3 is µ = 0.5. The gravitational acceleration is g = 9.807 m/s2. The initial
conditions at t = 0 are q1(0) = π/6 rad, q2(0) = π/4 rad, q3(0) = 0.01 m, and q̇1(0) = q̇2(0) = q̇3(0) = 0.
The feedback control is implemented using the constants c1 = c2 = c3 = c4 = 0.1, and c5 = c6 = 1. The
desired final state of the system is q1f = q2f = π/3 rad, and q3f = 0.1 m. The initial conditions response of
the co-ordinate q2(t) for IC3 = 0, IC3 = 0.05 kgm2, IC3 = 0.1 kgm2, and IC3 = 0.15 kgm2 is illustrated in
Figures 6.a-d.
One can define the error ei(t) = qi(t) − qif for the co-ordinate qi, i = 1, 2, 3. The maximum overshoot
eimax = max |ei(t)| and the settling time tsi (ei(t) < ei0 for t > tsi

), can be computed for i = 1, 2, 3, where
ei0 is a constant. The maximum overshoot e2max and the settling time ts2 are computed for different values
of IC3 , where e20 = 10−3 (Table 1). For IC3 = 0, the maximum overshoot is approximately zero (e2max ≈ 0)
and the settling time is ts2 = 4.83 s. Larger values of e2max and ts2 are observed for larger values of IC3 for
the same control parameters values.

IC3 [kgm2] 0 0.05 0.1 0.15
e2max ≈0 0.02 0.049 0.068
ts2 [s] 4.83 7.42 12.66 15.34

Table 1: The maximum overshoot e2max and the settling time ts2 computed for different values of IC3 .

Conclusions

The effect of prismatic joint inertia on the dynamic parameters of planar kinematic chains is presented. The
effect of the slider inertia may be negligible at low speeds but becomes significant at relatively high speeds.
Dynamic response characteristics of a planar robot arm are compared for different values of the slider inertia.
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Figure 1: a. Open kinematic chain with slider and friction; b. Force diagram for the link 1; c. Force diagram
for the link 2.

a.

b. c.

Figure 2: Three-link planar robot arm.
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Figure 3: The dynamic response of the co-ordinate q2 for the robot arm in the cases: a. IC3 = 0, b.
IC3 = 0.05 kgm2, c. IC3 = 0.1 kgm2, and d. IC3 = 0.15 kgm2.

d.

c.

b.

a.
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