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Abstract 

In this paper we present a high-level approach to implementing algorithms found in predictive parsing.  The 
algorithms are implemented in logic, functional and object-oriented styles, while retaining their original structure.  
This allows for better understanding on how the techniques represented by the algorithms work. 

Introduction 

Courses on algorithms and theory of computing are typically taught by giving high-level mathematical descriptions 
of the operations at hand, and then presenting algorithms at a lower level, which could be easily implementable in the 
language of choice [1], [4], [5], [9].  This has been the norm, since the high-level notions have not been easy to 
implement directly.  There is, however, a considerable gap between a typical algorithm presented in these texts, and 
the high-level definition that it implements.  We claim in this paper that we can have higher-level descriptions of 
these algorithms, which can be implemented in current programming languages with ease.  The descriptions 
presented here come from a functional interpretation of the algorithms .   The high-level mathematical operators 
naturally map to higher-order functions.  These could be directly implemented in languages like ML, Haskell, and 
Scheme, but can also be implemented in Prolog, and in Java and C++. 

We work in this paper with the notions of first and follow sets, in the context of predictive parsing.  We present 
solutions for first in Prolog, Scheme and Java, and for follow in Scheme, and discuss the equivalent solutions in 
Prolog and Java.  Solutions for both problems exhibit the same style.  We implement solutions that are adequate 
translations from the algorithms.  We are more concerned with the expressiveness of the algorithm, than with the 
actual efficiency that they may have. 

Grammars and Caches 

We will use the following grammar for expressions.  More precisely, assume G = (N,S,P,E), where 

N = {E, E’, T, T’, F }  

S = {a, +, *, (, ) }  

P = {E → T E’,  

E’ → + T E’ | ε,  

T → F T’,  

T’ → * F T’ | ε,  

F → a | ( E )}  
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In the above description, N represents the set of nonterminals or variables of the grammar, S the alphabet of the 
generated language, P the set of productions and E the initial nonterminal.  A terminal is  represented in blue, and ε 
corresponds to the empty string.  The above grammar generates phrases like a, a+a, a*a+a, ((a+a)*a)+a, etc. 

Algorithms for computing first and follow sets need to associate sets to each nonterminal.  This is accomplished by 
using the notion of a mapping, or environment, from nonterminals to sets of terminals.  This is implemented in 
languages under various names.  It is known in general as associative memory, or associative arrays, or caches, 
association lists in Lisp, and as maps in Java.  We will use the language neutral name cache for them, and will use 
operations for creating an empty cache (createEmptyCache), for selecting the value of a key in the cache (selCache) 
and to assemble a cache by explicitly mapping keys to values 〈key1 ?  value1, …, keyn ?  valuen〉.. 

Computing Fixpoints 

Fixpoints – Pumping from Bottom 

Intuitively, fixpoints are solutions to equations of the form 

x = f(x) 

where f is a known function and x is unknown. 

Fixpoints are introduced in the denotational semantics mainly to provide meaning to recursive functions.  In our case, 
we will use it to compute the reflexive and transitive closure of a function.  The technique we will use to compute the 
fixpoint is known as “pumping from bottom”, and is one in which a function f, for which the fixpoint is desired, is 
repeatedly applied to its argument until it has no effect on it.  That is, we supply an initial argument, and ‘pumping 
from bottom’ provides us with a solution to the fixpoint equation.  In short: 

⇑  f X = Z, 

 where ⇑  is the symbol that represents the fixpoint operation, f is the function for which the fixpoint is sought, X is 
the initial value, and  Z is the actual fixpoint.  The initial parameter X is interesting just to provide a seed to the 
function to operate.  The computation of the fixpoint is not usually possible, unless certain restrictions are satisfied: 

• The partial ordering implied by the information of the domain must be of finite height.  In our case, the 
domain will be the powerset of terminals, and its partial ordering is set inclusion.  This has finite height, with 
weakest element being the empty set and strongest element being the set of all terminals.  We will also use 
tuples of sets  for this domain, which are likewise of finite height. 

• The function f must be monotonic (the more information it receives in its parameter, the more information it 
returns).  In short, if X < Z, then f(X) ≤ f(Z). 

If these restrictions are satisfied, then the value Z computed by pumping from bottom is the weakest fixpoint for f that 
is stronger than X.  To compute the weakest fixpoint of the function, just supply the bottom element of the domain—
the empty set (Ø).  In our case, 

⇑  f Ø = Z 

We will be using a slightly more general version of the equation 

x = f(x,y1,…,yn) 

where all yi’s are constants.  This is equivalent to the equation introduced earlier, but more convenient to use. 
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Many operations on languages are just applications of closures on simpler operations.  Such is the case of the 
computation of first and follow sets, crucial pieces of information needed to compute the LL(k) or LR(k) table of a 
predictive parser.  These closure operations are fixpoints. 

In general, to compute a closure on a property we need to start with an initial set that satisfy the property, we need to 
have an operation to find new elements that satisfy the property, and include them to the set, and we need to do this 
operation until no new elements can be added. 

Implementation of ‘Pumping from Bottom’ 

The algorithm has been written following a functional style, but it is fully translatable to other paradigms.  The 
pumping from bottom operator is the most difficult element to implement, since it is a higher-order operation.  Sure 
enough, most programming languages are first-order, with an add-on limited higher-order capability.  In addition, the 
algorithm makes use of mathematical elements—mostly set operations—that may, or may not be available in your 
language.  If they are not, then they should be implemented.  In this example, we use the underlying list data structure 
to provide the needed set capabilities. 

Prolog Implementation.  In the following program code, pumpingFromBottom takes a (higher-order) predicate F, 
initial argument X to be pumped, the fixpoint version FixX of that argument, and all other arguments to the predicate 
as the list Args.  The first clause implements the case where the fixpoint has indeed been reached, and the second 
clause implements the recursive case, where the call to F provides a new version of the parameter X, which is later 
pumped.  Here, FixX is what is known as an ‘out parameter’, and F has been translated to a predicate form.  The 
actual predicate call is built as F(X,FixX|Args), where X and Args are the ‘in parameters’ to the F predicate, 
and FixX is the result of the predicate.   Prolog does not allow variable number of arguments, so all of them are 
collectively passed as a list (Args).  The function F, however, will receive all of them individually.  F is the higher-
order functional.  The following code was implemented using Amzi! Prolog [2]. 

pumpingFromBottom(F,X,X,Args) :- 
    Goal =.. [F,X,X|Args], 
    call(Goal),!. 
 
pumpingFromBottom(F,X,FixX,Args) :- 
    Goal =.. [F,X,NewX|Args], 
    call(Goal),!, 
    pumpingFromBottom(F,NewX,FixX,Args). 

Scheme Implementation.  Translation to Scheme is  simple, as the language supports higher-order functions and 
variable number of arguments.  The implementation shown runs in DrScheme [7]. 

(define (pumping-from-bottom f x . ys) 
  (let ((new-x (apply f x ys))) 
    (if (equal? x new-x) 
        x 
        (apply pumping-from-bottom f new-x ys)))) 

Java Implementation.  Translation to Java is a bit more complicated, due to restrictions in the type system.  Further, 
Java does not support higher-order functions directly, but they can be implemented using an interface [6], [8].  The 
higher-order function that is to be “pumped” must then be wrapped within an interface (ObjectFun) which 
contains f as one of its required methods.  On the bright side, the language has wonderful support for lists , sets, and 
mappings, which makes coding a breeze.  The code for the actual routine is  

public static Map pumpingFromBottom(ObjectFun fun, Map x, Map args) { 
    Map newX = fun.f(x,args); 
        if (x.equals(newX)) 
            return x; 
        else 
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            return pumpingFromBottom(fun,newX,args); 
} 

Once pumping from bottom is defined, it can be called with any object that has implemented ObjectFun.  This 
interface is defined as 

abstract interface ObjectFun { 
 public abstract Map f(Map x, Map args); 
} 

Computing First and Follow Sets 

For the sake of simplicity, we will assume that a single lookahead is sufficient, so the first and follow sets will 
compute single character lookaheads.  You may recall that, for any grammar G [9], 

first(a) = { trunc(w) | a ⇒* w }, for a ∈ (N∪S)*, w ∈ S* 

where 

trunc(ε) = ε   

trunc(aw) = a,  for a ∈ S, w ∈ S*  

The notion of the first set is defined for all strings, but its computation is tightly tied on the values of these sets for 
each of the nonterminals of a grammar, i.e., first(a) = a, but first(E+a) = {a, (} because E can derive in phrases starting 
with each of these terminals.  This operation cannot be computed as defined, but we will be able to compute it by 
observing just the first characters that are generated.  For this, we will use an auxiliary operation, bounded 
concatenation (⊕), which takes two strings (or two string up to length 1), and returns the first character of the 
concatenated string.  This operation is further generalized for sets of strings, with the following definition 

F1 ⊕ F2 = (F1 -  { e }) ∪ F2, if e ∈ F1  

F1 ⊕ F2 = F1, otherwise  

We will have the operation boundedConcat implement precisely this operator. 

Algorithm for First Sets 

In order to be able to readily compute the first set for any string with respect to a grammar, we need to have 
computed these sets for all nonterminals of the grammar.  For this, we will use a cache—an environment where 
nonterminals are associated to first sets.  Therefore, we will start with a version of first that computes its values 
based on a cache (first), and later abstract this element out by computing the fixpoint of the cache (First).  The 
fixpoint cache is computed by the function firsts.  We also need to define the operation that shows how these caches 
are improved (CachedFirst) 

first G Cache ε = { ε }   

first G Cache a = { a }   

first G Cache A = selCache A Cache, if A ∈ N  

first G Cache Xα = (first G Cache X) ⊕  (first G Cache α), if X ∈ N∪T and α∈ (N∪T)*  

CachedFirst G Cache = 〈... Ai?  ((first G Cache α1) ∪...∪(first G Cache αn))...〉,  

for all Ai ∈ N, and Ai→αj∈ P   
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firsts G = ⇑  CachedFirst (createEmptyCache G) G   

First G α = first G (firsts G) α   

Note that the pumping from bottom operation improves the original cache until it finds a fixpoint.  The following table 
summarizes the different caches that are computed: 

N First Caches (Iteration)  

 0 1 2 3 4  

E Ø Ø Ø { a, ( } { a, ( }  

E’ Ø { +, ε } { +, ε } { +, ε } { +, ε }  

T Ø Ø { a, ( } { a, ( } { a, ( }  

T’ Ø { *, ε } { *, ε } { *, ε } { *, ε }  

F Ø { a, ( } { a, ( } { a, ( } { a, ( }  

Note that the fixpoint is reached at the 3rd iteration, but this is not known until the 4th iteration shows the same result.  
Also, note that First abstracts away the notion of the cache—it just computes it internally.  The last cache contains 
the solution to the problem—the problem was solved by the use of pumping from bottom technique—but it is made 
available through the function First.  

Implementation of First Sets 

Here we will present Prolog, Scheme and Java implementations of for the first set computation 

Prolog Implementation.  Prolog’s limitations are more apparent at this point.  It lacks iterators, which are basic tools 
for list processing.  They could have been introduced as higher-order predicates, but that would change the 
character of the language.  Instead, the hand-coded recomputeFiRHSs is the needed iterator.  Prolog also lacks 
simple mechanisms for abstracting the names of the supporting predicates.  Prolog’s straightforward implementation 
of the function First(G,a) by recomputing the fixpoint cache for each call to First would be highly inefficient.  
Another alternative would be to assert the cache, but this is highly inconvenient.  Finally, another alternative is to 
use first, with the fixpoint cache, and this is exactly the implemented function first. 

first(Cache,[],[[]]) :- !. 
first(Cache,[X|Xs],Y) :- 
    first(Cache,X,Yl), 
    first(Cache,Xs,Yr), 
    boundedconcat(Yl,Yr,Y). 
first(Cache,X,Y) :- 
    nonterminal(X,Cache),!, 
    selCache(X,Cache,Y). 
first(_,X,[X]) :- 
    atomic(X). 
 
cachedFirst(_,[],[]) :- !. 
cachedFirst(Cache,[[A,NewFirstSet]|RNewCache],[[A|RHSs]|RGrammar]) :- 
    recomputeFiRHSs(Cache,RHSs,NewFirstSet), 
    cachedFirst(Cache,RNewCache,RGrammar). 
 
recomputeFiRHSs(Cache,[],[]) :- !. 
recomputeFiRHSs(Cache,[RHS|RHSs],NewFirstSet) :- 
    first(Cache,RHS,FirstRHS), 
    recomputeFiRHSs(Cache,RHSs,FirstRHSs), 
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    union(FirstRHS,FirstRHSs,NewFirstSet). 
 
firsts(Grammar,Cache) :- 
    createCache(Grammar,BottomCache), 
    pumpingFromBottom(cachedFirst,Cache,BottomCache,[Grammar]). 

Scheme Implementation.  Scheme iterators map and fold are just the right tools for solving the problem.  Although 
Scheme allows for local function definitions, and hence some information hiding, it seemed unnecessary to do it here, 
since it would create a larger S-expression.  After all, lisp programmers are used to a flat environment.  The First 
function will not be explicitly defined.  However, Lisp programmers have tools to specialize first with the fixpoint 
cache into the function First. 

 (define (first cache word) 
  (cond ((null? word) 
         '(())) 
        ((list? word) 
         (bounded-concat (first cache (car word)) 
                         (first cache (cdr word)))) 
        ((nonterminal? word cache) 
         (sel-cache word cache)) 
        (else 
         (list word)))) 
 
(define (cached-first cache grammar) 
  (let ((f (lambda (A-prods) 
             (let ((A (car A-prods)) 
                   (prods (cdr A-prods))) 
               (list A  
                     (qs 
                      (fold union 
                            '() 
                            (map (lambda (RHS) 
                                   (first cache RHS)) 
                                 prods)))))))) 
    (map f grammar))) 
 
(define (firsts grammar) 
  (pumping-from-bottom cached-first (create-cache grammar) grammar)) 

Java Implementation.  As before, the type system adds to the complexity of the solution.  In order to solve this 
problem, the cachedFirst method—the function that is to complete the meaning of pumping-from-bottom—has 
to be coded in a separate class, which must implement the ObjectFun interface.  We will show just the relevant 
methods to the solution. 

class CachedFirst implements ObjectFun { 
 
    …… 
 
    HashSet first(Map grammar, Map cache, List word) { 
        String emptyString[]={""}; 
        HashSet acc = new HashSet(Arrays.asList(emptyString)); 
        for (Iterator iterator=word.iterator(); iterator.hasNext(); ) { 
            String x = (String) iterator.next(); 
            if (nonterminal(x)) { 
                acc = boundedConcat(acc, (HashSet) cache.get(x)); 
            } 
            else { 
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                HashSet tmp = new HashSet(); 
                tmp.add(x); 
                acc = boundedConcat(acc, tmp); 
            } 
        } 
        return acc; 
    } 
 
    public Map f(Map cache, Map grammar) { 
        Map newCache = new TreeMap(); 
        for (Iterator it=grammar.keySet().iterator();it.hasNext();) { 
            String LHS = (String) it.next(); 
            HashSet RHSs = (HashSet) grammar.get(LHS); 
            HashSet newSet = new HashSet(); 
            for (Iterator it2=RHSs.iterator(); it2.hasNext(); ) { 
                List RHS = (List) it2.next(); 
                newSet.addAll(first(grammar,cache,RHS)); 
            } 
            newCache.put(LHS,newSet); 
        } 
        return newCache; 
    } 
} 
 

public class PredictiveParsing { 

    …… 
    public static Map firsts(Map grammar) { 
        return pumpingFromBottom(new CachedFirst(),newCache(grammar),grammar); 
    } 
   …… 
} 

Algorithm of Follow Sets 

The follow sets are described in way analogous to the first sets.  However, they require the information from the 
grammar in a different way—the algorithm requests the ‘right contexts’ of nonterminals.  This is not apparent in the 
algorithm, but it will surface in the implementations.  The follow operation is defined only for nonterminals, and it just 
seeks the value of the nonterminals in the supplied cache.  The Follow operation, on the other hand, computes the 
fixpoint cache, and therefore abstracts the cache from the operation.  The CachedFollow operation indicates how a 
cache is improved. 

follow G Cache A = selCache A Cache, if A ∈ N  

CachedFollow G Cache =    

        〈... Ai?  ((First G α1) ⊕  (selCache B1 Cache)) ∪...∪(First G αn) ⊕  (selCache Bn Cache)))...〉,  

  for all Ai ∈ N, and Bj→βjAiαj∈ P  

Follows G = (⇑  CachedFollow (createEmptyCache G) G)   

Follow G A = follow G (Follows G) A   

As in the case of the first sets, the pumping from bottom operation improves the original cache until it finds a 
fixpoint.  The following table summarizes the different caches that have been computed: 
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N Follow Caches (Iteration)  

 0 1 2 3 4  

E Ø { $, ) } { $, ) } { $, ) } { $, ) }  

E’ Ø Ø { $, ) } { $, ) } { $, ) }  

T Ø { + } { $, ), + } { $, ), + } { $, ), + }  

T’ Ø Ø { + } { $, ), + } { $, ), + }  

F Ø { a, ( } { +, * } { $, ), +, *  } { $, ), +, *  }  

Note that, again, the fixpoint is reached at the 3rd iteration, and that this fact is known after computing the 4th iteration.  
Also, note that First abstracts away the notion of the cache—it just computes it internally.  The last cache contains 
the solution to the problem—the problem was solved by the use of pumping from bottom technique—but it is made 
available through the function First. 

Implementation of Follow Sets 

It is customary to obtain an intermediate data structure (a cache) that has readily access to the information of the 
right-contexts.  This seems as a departure from the previous algorithm, but it really is not.  Following is the set of 
equations that first and follow sets compute in order to obtain their values: 

N first(N) follow(N)  

E first(T)⊕first(E’) first($)⊕follow(E) ∪ first())⊕follow(F)  

E’ first(+)⊕first(T)⊕first(E’) ∪ first(ε) first(ε)⊕follow(E) ∪ first(ε)⊕follow(E’)  

T first(F)⊕first(T’) first(E’)⊕follow(E) ∪ first(E’)⊕follow(E’)  

T’ first(*)⊕first(F)⊕first(T’) ∪ first(ε) first(ε)⊕follow(T) ∪ first(ε)⊕follow(T’)  

F first(a) ∪ first(()⊕first(E)⊕first()) first(T’)⊕follow(T) ∪ first(T’)⊕follow(T’)  

As can be seen, the equations for first mimic the production structure, whereas those for follow do not.  So while it 
seems reasonable to iterate over the grammar for computing the first sets, it is advantageous to compute the structure 
of the right column as a basis of computing follow.  This is not strictly necessary.  The encoding of these operations, 
as a cache will be called FollowEnc. 

The higher-order operation introduced before (pumping from bottom) can be reused in this algorithm.  There are no 
more significant challenges.  Here we present the Scheme implementation. 

Scheme Implementation.  Besides the use of the map and fold iterators, we are creating a specialized first function to 
be used with these functions. 

(define (follow cache A) 
  (sel-cache A cache)) 
 
(define (cached-follow cache first followEnc) 
  (let ((f (lambda (A-specs) 
             (let ((A (car A-specs)) 
                   (specs (cdr A-specs))) 
               (list A  
                     (qs 
                      (fold union 
                           '() 
                           (map (lambda (spec) 
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                                  (bounded-concat 
                                   (first (cadr spec)) 
                                   (follow cache (car spec)))) 
                                specs)))))))) 
    (map f followEnc))) 
 
(define (follows followEnc first) 
  (pump-from-bottom cached-follow (create-cache followEnc) first followEnc)) 

Note that the call to this function should supply the specialized first function: (lambda (N) (first Cache 
N)), where Cache is the previously computed cache for the first sets. 

Java Implementation.  The Java implementation requires a new implementation of ObjectFun (CachedFollow).  
This implementation can be supplied with the first cache.  A slightly more sophisticated implementation calls for a 
redesign of the CachedFirst class, so that it hides the cache, and just makes a method first public.     

Conclusion 

In this paper, we have presented a higher-level exposition of algorithms for computing the first and follow sets, 
necessary for predictive parsing, and have given algorithms implemented in logic, functional and object-oriented 
programming.  This idea can be extended to a variety of algorithms that appear in theory of languages, and in other 
areas of Computer Science.  The value of these implementations is how direct high-level mathematical notions are 
translated to real programs.  We expect that newer notions in the field of computing, such as patterns and frameworks 
[3], [10] may supplement the exposition of these notions, for their better understanding. 

The algorithms presented in this paper have been used in a course on Concepts of Programming Languages, both at 
undergraduate and at graduate level.  Students are requested to implement parts of it in any of the programming 
languages used. 
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