
ASEE Southeast Section Conference 2004

Declarative Algorithms for Language Theory

Juan Carlos Guzman1

Abstract

In this paper we present a high-level approach to implementing algorithms found in predictive parsing. The
algorithms are implemented in logic, functional and object-oriented styles, while retaining their original structure.
This allows for better understanding on how the techniques represented by the algorithms work.

Introduction

Courses on algorithms and theory of computing are typically taught by giving high-level mathematical descriptions
of the operations at hand, and then presenting algorithms at a lower level, which could be easily implementable in the
language of choice [1], [4], [5], [9]. This has been the norm, since the high-level notions have not been easy to
implement directly. There is, however, a considerable gap between a typical algorithm presented in these texts, and
the high-level definition that it implements. We claim in this paper that we can have higher-level descriptions of
these algorithms, which can be implemented in current programming languages with ease. The descriptions
presented here come from a functional interpretation of the algorithms . The high-level mathematical operators
naturally map to higher-order functions. These could be directly implemented in languages like ML, Haskell, and
Scheme, but can also be implemented in Prolog, and in Java and C++.

We work in this paper with the notions of first and follow sets, in the context of predictive parsing. We present
solutions for first in Prolog, Scheme and Java, and for follow in Scheme, and discuss the equivalent solutions in
Prolog and Java. Solutions for both problems exhibit the same style. We implement solutions that are adequate
translations from the algorithms. We are more concerned with the expressiveness of the algorithm, than with the
actual efficiency that they may have.

Grammars and Caches

We will use the following grammar for expressions. More precisely, assume G = (N,S,P,E), where

N = {E, E’, T, T’, F }

S = {a, +, *, (,) }

P = {E → T E’,

E’ → + T E’ | ε,

T → F T’,

T’ → * F T’ | ε,

F → a | (E)}

1 Department of Computer Science, Southern Polytechnic State University, 1100 South Marietta Parkway,
Marietta, GA 30060. e-mail: jguzman@spsu.edu

ASEE Southeast Section Conference 2004

In the above description, N represents the set of nonterminals or variables of the grammar, S the alphabet of the
generated language, P the set of productions and E the initial nonterminal. A terminal is represented in blue, and ε
corresponds to the empty string. The above grammar generates phrases like a, a+a, a*a+a, ((a+a)*a)+a, etc.

Algorithms for computing first and follow sets need to associate sets to each nonterminal. This is accomplished by
using the notion of a mapping, or environment, from nonterminals to sets of terminals. This is implemented in
languages under various names. It is known in general as associative memory, or associative arrays, or caches,
association lists in Lisp, and as maps in Java. We will use the language neutral name cache for them, and will use
operations for creating an empty cache (createEmptyCache), for selecting the value of a key in the cache (selCache)
and to assemble a cache by explicitly mapping keys to values 〈key1 ? value1, …, keyn ? valuen〉..

Computing Fixpoints

Fixpoints – Pumping from Bottom

Intuitively, fixpoints are solutions to equations of the form

x = f(x)

where f is a known function and x is unknown.

Fixpoints are introduced in the denotational semantics mainly to provide meaning to recursive functions. In our case,
we will use it to compute the reflexive and transitive closure of a function. The technique we will use to compute the
fixpoint is known as “pumping from bottom”, and is one in which a function f, for which the fixpoint is desired, is
repeatedly applied to its argument until it has no effect on it. That is, we supply an initial argument, and ‘pumping
from bottom’ provides us with a solution to the fixpoint equation. In short:

⇑ f X = Z,

 where ⇑ is the symbol that represents the fixpoint operation, f is the function for which the fixpoint is sought, X is
the initial value, and Z is the actual fixpoint. The initial parameter X is interesting just to provide a seed to the
function to operate. The computation of the fixpoint is not usually possible, unless certain restrictions are satisfied:

• The partial ordering implied by the information of the domain must be of finite height. In our case, the
domain will be the powerset of terminals, and its partial ordering is set inclusion. This has finite height, with
weakest element being the empty set and strongest element being the set of all terminals. We will also use
tuples of sets for this domain, which are likewise of finite height.

• The function f must be monotonic (the more information it receives in its parameter, the more information it
returns). In short, if X < Z, then f(X) ≤ f(Z).

If these restrictions are satisfied, then the value Z computed by pumping from bottom is the weakest fixpoint for f that
is stronger than X. To compute the weakest fixpoint of the function, just supply the bottom element of the domain—
the empty set (Ø). In our case,

⇑ f Ø = Z

We will be using a slightly more general version of the equation

x = f(x,y1,…,yn)

where all yi’s are constants. This is equivalent to the equation introduced earlier, but more convenient to use.

ASEE Southeast Section Conference 2004

Many operations on languages are just applications of closures on simpler operations. Such is the case of the
computation of first and follow sets, crucial pieces of information needed to compute the LL(k) or LR(k) table of a
predictive parser. These closure operations are fixpoints.

In general, to compute a closure on a property we need to start with an initial set that satisfy the property, we need to
have an operation to find new elements that satisfy the property, and include them to the set, and we need to do this
operation until no new elements can be added.

Implementation of ‘Pumping from Bottom’

The algorithm has been written following a functional style, but it is fully translatable to other paradigms. The
pumping from bottom operator is the most difficult element to implement, since it is a higher-order operation. Sure
enough, most programming languages are first-order, with an add-on limited higher-order capability. In addition, the
algorithm makes use of mathematical elements—mostly set operations—that may, or may not be available in your
language. If they are not, then they should be implemented. In this example, we use the underlying list data structure
to provide the needed set capabilities.

Prolog Implementation. In the following program code, pumpingFromBottom takes a (higher-order) predicate F,
initial argument X to be pumped, the fixpoint version FixX of that argument, and all other arguments to the predicate
as the list Args. The first clause implements the case where the fixpoint has indeed been reached, and the second
clause implements the recursive case, where the call to F provides a new version of the parameter X, which is later
pumped. Here, FixX is what is known as an ‘out parameter’, and F has been translated to a predicate form. The
actual predicate call is built as F(X,FixX|Args), where X and Args are the ‘in parameters’ to the F predicate,
and FixX is the result of the predicate. Prolog does not allow variable number of arguments, so all of them are
collectively passed as a list (Args). The function F, however, will receive all of them individually. F is the higher-
order functional. The following code was implemented using Amzi! Prolog [2].

pumpingFromBottom(F,X,X,Args) :-
 Goal =.. [F,X,X|Args],
 call(Goal),!.

pumpingFromBottom(F,X,FixX,Args) :-
 Goal =.. [F,X,NewX|Args],
 call(Goal),!,
 pumpingFromBottom(F,NewX,FixX,Args).

Scheme Implementation. Translation to Scheme is simple, as the language supports higher-order functions and
variable number of arguments. The implementation shown runs in DrScheme [7].

(define (pumping-from-bottom f x . ys)
 (let ((new-x (apply f x ys)))
 (if (equal? x new-x)
 x
 (apply pumping-from-bottom f new-x ys))))

Java Implementation. Translation to Java is a bit more complicated, due to restrictions in the type system. Further,
Java does not support higher-order functions directly, but they can be implemented using an interface [6], [8]. The
higher-order function that is to be “pumped” must then be wrapped within an interface (ObjectFun) which
contains f as one of its required methods. On the bright side, the language has wonderful support for lists , sets, and
mappings, which makes coding a breeze. The code for the actual routine is

public static Map pumpingFromBottom(ObjectFun fun, Map x, Map args) {
 Map newX = fun.f(x,args);
 if (x.equals(newX))
 return x;
 else

ASEE Southeast Section Conference 2004

 return pumpingFromBottom(fun,newX,args);
}

Once pumping from bottom is defined, it can be called with any object that has implemented ObjectFun. This
interface is defined as

abstract interface ObjectFun {
 public abstract Map f(Map x, Map args);
}

Computing First and Follow Sets

For the sake of simplicity, we will assume that a single lookahead is sufficient, so the first and follow sets will
compute single character lookaheads. You may recall that, for any grammar G [9],

first(a) = { trunc(w) | a ⇒* w }, for a ∈ (N∪S)*, w ∈ S*

where

trunc(ε) = ε

trunc(aw) = a, for a ∈ S, w ∈ S*

The notion of the first set is defined for all strings, but its computation is tightly tied on the values of these sets for
each of the nonterminals of a grammar, i.e., first(a) = a, but first(E+a) = {a, (} because E can derive in phrases starting
with each of these terminals. This operation cannot be computed as defined, but we will be able to compute it by
observing just the first characters that are generated. For this, we will use an auxiliary operation, bounded
concatenation (⊕), which takes two strings (or two string up to length 1), and returns the first character of the
concatenated string. This operation is further generalized for sets of strings, with the following definition

F1 ⊕ F2 = (F1 - { e }) ∪ F2, if e ∈ F1

F1 ⊕ F2 = F1, otherwise

We will have the operation boundedConcat implement precisely this operator.

Algorithm for First Sets

In order to be able to readily compute the first set for any string with respect to a grammar, we need to have
computed these sets for all nonterminals of the grammar. For this, we will use a cache—an environment where
nonterminals are associated to first sets. Therefore, we will start with a version of first that computes its values
based on a cache (first), and later abstract this element out by computing the fixpoint of the cache (First). The
fixpoint cache is computed by the function firsts. We also need to define the operation that shows how these caches
are improved (CachedFirst)

first G Cache ε = { ε }

first G Cache a = { a }

first G Cache A = selCache A Cache, if A ∈ N

first G Cache Xα = (first G Cache X) ⊕ (first G Cache α), if X ∈ N∪T and α∈ (N∪T)*

CachedFirst G Cache = 〈... Ai? ((first G Cache α1) ∪...∪(first G Cache αn))...〉,

for all Ai ∈ N, and Ai→αj∈ P

ASEE Southeast Section Conference 2004

firsts G = ⇑ CachedFirst (createEmptyCache G) G

First G α = first G (firsts G) α

Note that the pumping from bottom operation improves the original cache until it finds a fixpoint. The following table
summarizes the different caches that are computed:

N First Caches (Iteration)

 0 1 2 3 4

E Ø Ø Ø { a, (} { a, (}

E’ Ø { +, ε } { +, ε } { +, ε } { +, ε }

T Ø Ø { a, (} { a, (} { a, (}

T’ Ø { *, ε } { *, ε } { *, ε } { *, ε }

F Ø { a, (} { a, (} { a, (} { a, (}

Note that the fixpoint is reached at the 3rd iteration, but this is not known until the 4th iteration shows the same result.
Also, note that First abstracts away the notion of the cache—it just computes it internally. The last cache contains
the solution to the problem—the problem was solved by the use of pumping from bottom technique—but it is made
available through the function First.

Implementation of First Sets

Here we will present Prolog, Scheme and Java implementations of for the first set computation

Prolog Implementation. Prolog’s limitations are more apparent at this point. It lacks iterators, which are basic tools
for list processing. They could have been introduced as higher-order predicates, but that would change the
character of the language. Instead, the hand-coded recomputeFiRHSs is the needed iterator. Prolog also lacks
simple mechanisms for abstracting the names of the supporting predicates. Prolog’s straightforward implementation
of the function First(G,a) by recomputing the fixpoint cache for each call to First would be highly inefficient.
Another alternative would be to assert the cache, but this is highly inconvenient. Finally, another alternative is to
use first, with the fixpoint cache, and this is exactly the implemented function first.

first(Cache,[],[[]]) :- !.
first(Cache,[X|Xs],Y) :-
 first(Cache,X,Yl),
 first(Cache,Xs,Yr),
 boundedconcat(Yl,Yr,Y).
first(Cache,X,Y) :-
 nonterminal(X,Cache),!,
 selCache(X,Cache,Y).
first(_,X,[X]) :-
 atomic(X).

cachedFirst(_,[],[]) :- !.
cachedFirst(Cache,[[A,NewFirstSet]|RNewCache],[[A|RHSs]|RGrammar]) :-
 recomputeFiRHSs(Cache,RHSs,NewFirstSet),
 cachedFirst(Cache,RNewCache,RGrammar).

recomputeFiRHSs(Cache,[],[]) :- !.
recomputeFiRHSs(Cache,[RHS|RHSs],NewFirstSet) :-
 first(Cache,RHS,FirstRHS),
 recomputeFiRHSs(Cache,RHSs,FirstRHSs),

ASEE Southeast Section Conference 2004

 union(FirstRHS,FirstRHSs,NewFirstSet).

firsts(Grammar,Cache) :-
 createCache(Grammar,BottomCache),
 pumpingFromBottom(cachedFirst,Cache,BottomCache,[Grammar]).

Scheme Implementation. Scheme iterators map and fold are just the right tools for solving the problem. Although
Scheme allows for local function definitions, and hence some information hiding, it seemed unnecessary to do it here,
since it would create a larger S-expression. After all, lisp programmers are used to a flat environment. The First
function will not be explicitly defined. However, Lisp programmers have tools to specialize first with the fixpoint
cache into the function First.

 (define (first cache word)
 (cond ((null? word)
 '(()))
 ((list? word)
 (bounded-concat (first cache (car word))
 (first cache (cdr word))))
 ((nonterminal? word cache)
 (sel-cache word cache))
 (else
 (list word))))

(define (cached-first cache grammar)
 (let ((f (lambda (A-prods)
 (let ((A (car A-prods))
 (prods (cdr A-prods)))
 (list A
 (qs
 (fold union
 '()
 (map (lambda (RHS)
 (first cache RHS))
 prods))))))))
 (map f grammar)))

(define (firsts grammar)
 (pumping-from-bottom cached-first (create-cache grammar) grammar))

Java Implementation. As before, the type system adds to the complexity of the solution. In order to solve this
problem, the cachedFirst method—the function that is to complete the meaning of pumping-from-bottom—has
to be coded in a separate class, which must implement the ObjectFun interface. We will show just the relevant
methods to the solution.

class CachedFirst implements ObjectFun {

 ……

 HashSet first(Map grammar, Map cache, List word) {
 String emptyString[]={""};
 HashSet acc = new HashSet(Arrays.asList(emptyString));
 for (Iterator iterator=word.iterator(); iterator.hasNext();) {
 String x = (String) iterator.next();
 if (nonterminal(x)) {
 acc = boundedConcat(acc, (HashSet) cache.get(x));
 }
 else {

ASEE Southeast Section Conference 2004

 HashSet tmp = new HashSet();
 tmp.add(x);
 acc = boundedConcat(acc, tmp);
 }
 }
 return acc;
 }

 public Map f(Map cache, Map grammar) {
 Map newCache = new TreeMap();
 for (Iterator it=grammar.keySet().iterator();it.hasNext();) {
 String LHS = (String) it.next();
 HashSet RHSs = (HashSet) grammar.get(LHS);
 HashSet newSet = new HashSet();
 for (Iterator it2=RHSs.iterator(); it2.hasNext();) {
 List RHS = (List) it2.next();
 newSet.addAll(first(grammar,cache,RHS));
 }
 newCache.put(LHS,newSet);
 }
 return newCache;
 }
}

public class PredictiveParsing {

 ……
 public static Map firsts(Map grammar) {
 return pumpingFromBottom(new CachedFirst(),newCache(grammar),grammar);
 }
 ……
}

Algorithm of Follow Sets

The follow sets are described in way analogous to the first sets. However, they require the information from the
grammar in a different way—the algorithm requests the ‘right contexts’ of nonterminals. This is not apparent in the
algorithm, but it will surface in the implementations. The follow operation is defined only for nonterminals, and it just
seeks the value of the nonterminals in the supplied cache. The Follow operation, on the other hand, computes the
fixpoint cache, and therefore abstracts the cache from the operation. The CachedFollow operation indicates how a
cache is improved.

follow G Cache A = selCache A Cache, if A ∈ N

CachedFollow G Cache =

 〈... Ai? ((First G α1) ⊕ (selCache B1 Cache)) ∪...∪(First G αn) ⊕ (selCache Bn Cache)))...〉,

 for all Ai ∈ N, and Bj→βjAiαj∈ P

Follows G = (⇑ CachedFollow (createEmptyCache G) G)

Follow G A = follow G (Follows G) A

As in the case of the first sets, the pumping from bottom operation improves the original cache until it finds a
fixpoint. The following table summarizes the different caches that have been computed:

ASEE Southeast Section Conference 2004

N Follow Caches (Iteration)

 0 1 2 3 4

E Ø { $,) } { $,) } { $,) } { $,) }

E’ Ø Ø { $,) } { $,) } { $,) }

T Ø { + } { $,), + } { $,), + } { $,), + }

T’ Ø Ø { + } { $,), + } { $,), + }

F Ø { a, (} { +, * } { $,), +, * } { $,), +, * }

Note that, again, the fixpoint is reached at the 3rd iteration, and that this fact is known after computing the 4th iteration.
Also, note that First abstracts away the notion of the cache—it just computes it internally. The last cache contains
the solution to the problem—the problem was solved by the use of pumping from bottom technique—but it is made
available through the function First.

Implementation of Follow Sets

It is customary to obtain an intermediate data structure (a cache) that has readily access to the information of the
right-contexts. This seems as a departure from the previous algorithm, but it really is not. Following is the set of
equations that first and follow sets compute in order to obtain their values:

N first(N) follow(N)

E first(T)⊕first(E’) first($)⊕follow(E) ∪ first())⊕follow(F)

E’ first(+)⊕first(T)⊕first(E’) ∪ first(ε) first(ε)⊕follow(E) ∪ first(ε)⊕follow(E’)

T first(F)⊕first(T’) first(E’)⊕follow(E) ∪ first(E’)⊕follow(E’)

T’ first(*)⊕first(F)⊕first(T’) ∪ first(ε) first(ε)⊕follow(T) ∪ first(ε)⊕follow(T’)

F first(a) ∪ first(()⊕first(E)⊕first()) first(T’)⊕follow(T) ∪ first(T’)⊕follow(T’)

As can be seen, the equations for first mimic the production structure, whereas those for follow do not. So while it
seems reasonable to iterate over the grammar for computing the first sets, it is advantageous to compute the structure
of the right column as a basis of computing follow. This is not strictly necessary. The encoding of these operations,
as a cache will be called FollowEnc.

The higher-order operation introduced before (pumping from bottom) can be reused in this algorithm. There are no
more significant challenges. Here we present the Scheme implementation.

Scheme Implementation. Besides the use of the map and fold iterators, we are creating a specialized first function to
be used with these functions.

(define (follow cache A)
 (sel-cache A cache))

(define (cached-follow cache first followEnc)
 (let ((f (lambda (A-specs)
 (let ((A (car A-specs))
 (specs (cdr A-specs)))
 (list A
 (qs
 (fold union
 '()
 (map (lambda (spec)

ASEE Southeast Section Conference 2004

 (bounded-concat
 (first (cadr spec))
 (follow cache (car spec))))
 specs))))))))
 (map f followEnc)))

(define (follows followEnc first)
 (pump-from-bottom cached-follow (create-cache followEnc) first followEnc))

Note that the call to this function should supply the specialized first function: (lambda (N) (first Cache
N)), where Cache is the previously computed cache for the first sets.

Java Implementation. The Java implementation requires a new implementation of ObjectFun (CachedFollow).
This implementation can be supplied with the first cache. A slightly more sophisticated implementation calls for a
redesign of the CachedFirst class, so that it hides the cache, and just makes a method first public.

Conclusion

In this paper, we have presented a higher-level exposition of algorithms for computing the first and follow sets,
necessary for predictive parsing, and have given algorithms implemented in logic, functional and object-oriented
programming. This idea can be extended to a variety of algorithms that appear in theory of languages, and in other
areas of Computer Science. The value of these implementations is how direct high-level mathematical notions are
translated to real programs. We expect that newer notions in the field of computing, such as patterns and frameworks
[3], [10] may supplement the exposition of these notions, for their better understanding.

The algorithms presented in this paper have been used in a course on Concepts of Programming Languages, both at
undergraduate and at graduate level. Students are requested to implement parts of it in any of the programming
languages used.

References

1. Aho, A., Sethi, R. and Ullman, J. (1986) Compilers—Principles, Techniques and Tools, Addison Wesley.

2. Amzi! Inc., Amzi! Prolog, http://www.amzi.com/ .

3. Gamma, E, Helm, R. et al (1995) Design Patterns, Addison Wesley.

4. Hopcroft, J., Motwani, R. and Ullman, J. (2001) Introduction to Automata Theory, Languages, and Computation
(2nd Ed.), Addison Wesley.

5. Lewis, H. and Papadimitriou, C. (1998) Elements of the Theory of Computation (2nd Ed.), Prentice Hall.

6. Naugler, D. (2003) Functional Programming in Java,” In The Journal of Computing in Small Colleges, The
Consortium for Computing in Small Colleges.

7. PLT, DrScheme , http://www.drscheme.org/.

8. Setzer, A. (2002) “Java as a Functional Programming Language,” In Types 2002, Proceedings of the workshop
Types for Proofs and Programs, Lecture Notes in Computer Science 2646, Springer-Verlag.

9. Sudkamp, T. (1997) Languages and Machines, Addison Wesley.

10. Szyperski, C. (2002) Component Software, Addison Wesley.

ASEE Southeast Section Conference 2004

Juan Carlos Guzmán

Ing. en Computación, Universidad Simón Bolívar, Caracas, Venezuela, 1983. M.S., M.Phil., Yale University, 1986.
Ph.D., Yale University, 1993. He has been a faculty member of Southern Polytechnic State University, in Marietta,
Georgia, since 1999.

