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Abstract 

The development specifications for complex, group-oriented projects can provide students with realistic, industry-
like experience in design, design verification, and system integration.  Projects of sufficient complexity facilitate 
partitioning a large group of students into smaller groups responsible for various tasks including hardware design, 
software development, physical design, and prototype implementation.  The development and verification of these 
specifications can require considerable time, particularly in the case of hardware/software co-design projects.  
However, with minor modifications, the same or similar projects can be subsequently used in multiple courses such 
as VLSI design and testing courses, VHDL modeling, simulation and synthesis courses, as well as senior capstone 
design project courses.  This paper gives an overview of hardware/software co-design projects, most of which 
resulted directly from industry suggestions, that have been developed and modified for use in multiple courses. 

Introduction 
Industrial product design and development is intensively group-oriented due to the size and complexity of most 
current products and systems.  This requires engineers to meet specifications and schedules with a high probability 
that designs will not only work but will also smoothly integrate into the overall system.  For example, until the late 
1980s, Application Specific Integrated Circuits (ASICs) were typically designed by a single designer per chip with 
integration at the printed circuit board (PCB) level representing group-oriented design.  Similarly, PCBs were 
integrated at the unit and/or system-level by various groups of designers followed by integration with system 
software.  The failure to meet design specifications requires redesign of one or more ASICs or PCBs with resultant 
delays to final system integration along with the associated time-to-market delay and loss of revenue for the 
product.  Many, if not most, redesigns result from lack of attention to specifications with simple errors like reversed 
bus order, incorrect signal names, incorrect active signal levels, etc.  As the complexity of VLSI devices grew with 
the capabilities of hardware description languages (HDLs), such as VHDL and Verilog, and their associated 
Computer-Aided Design (CAD) tools for automated synthesis, groups of designers were required for a single ASIC 
design.  While the features and capabilities of HDLs and CAD tools facilitate higher levels of modeling and design 
verification, the need to meet system specifications and requirements has not diminished.  In fact, the need for 
paying attention to the details of specifications has grown due to shortened design cycles and schedules.  This 
requires more collaborative group effort, particularly between hardware and software designers, where each 
designer is relied upon to design their individual component to work properly with the rest of the system in order for 
the project to succeed. 

Gaining experience in this type of design environment can be difficult for students in the individual or small group 
performance-based educational system.  Complex specification-based projects provide this design experience for 
students, particularly when the project is implemented in an integrated hardware/software environment and when 
the project is of sufficient complexity to require multiple students to work together to successfully complete the 
project such that the design fully meets the specifications.  In order to maximize the value added to the students’ 
design experience, the requirements and specifications for the project must be extensive and well defined, usually to 
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a greater degree than those typically encountered in industry where requirements and specifications are often 
developed as the project progresses.  Developing this level of detail and accuracy in the specifications for a project 
can be time consuming, but this investment can yield greater dividends when the project is used in multiple courses.  
In order to maximize the effectiveness of a project in a given course, the requirements and specifications may need 
to be modified to fit the framework of that specific course.  This paper gives an overview and assessment of 
specifications-based hardware/software co-design projects that have been developed by the author and modified for 
use in multiple courses.  Many of the project ideas resulted directly from industry suggestions.  The paper begins 
with a discussion of five types of project-oriented design courses and the level of detail for the specifications needed 
in each of these courses.  This is followed by an overview of specific projects that have been developed by the 
author and used in these various courses over the past ten years.  Next, the specifications for one of these projects 
are provided to give a detailed example of the level of detail in the specifications and to provide these specifications 
for use (with or without modification) in similar courses at other universities. 

Design Project Courses 
The type of course can dictate the level of detail needed in specifications for the project.  Five types of courses in 
which a single project can be used include capstone design courses, VLSI design courses, VLSI testing courses, 
HDL courses, and programmable logic courses.  HDL courses typically focus on either VHDL or Verilog.  
Programmable logic courses typically focus on Field Programmable Gate Arrays (FPGAs) and Complex 
Programmable Logic Devices (CPLDs).  Often, HDLs and programmable logic are combined in a single course due 
to the natural interface between these two subjects as a result of current CAD tools where an HDL is easily 
synthesized in to FPGAs or CPLDs for a fast and effective hardware implementation.  As a result, these courses will 
be assumed to be combined in the following discussion.  Similarly, VLSI design and testing courses are often 
associated with each other as will be assumed in the following discussion of specifications for projects related to 
these courses. 

Capstone Design 

Capstone design project courses offer an excellent opportunity to provide students with an industrial-type design 
environment.  This is particularly true with hardware/software co-design projects of sufficient complexity to warrant 
partitioning the class into multiple groups (of three to four students each) responsible for hardware design, software 
design, hardware/software interface design, physical design and prototype implementation.  In this type of course, it 
is important for the instructor to have a detailed set of specifications that would represent customer requirements for 
the final system.  However, it is also essential to give the students experience with partitioning the system and 
developing requirements and specifications for each partition as part of the project.  Therefore, with the “customer” 
requirements in hand, the instructor should provide general architectural guidance to assist the complete group of  
students in developing detailed and realistic requirements, specifications, and schedules during the first few weeks 
of project while background lectures are given.  The instructor then acts as the project manager to oversee and 
monitor the progress of each group while weekly class meetings focus on status reports presented by each group 
along with technical discussion and communication between groups.  Sufficient time should be given for system 
level integration and debugging at the end of the course to facilitate a successful completion of the project since 
students are typically optimistic (due to their inexperience) in regard to how much time and effort is involved in this 
phase of a project.  The industrial-like environment is further enhanced with performance reviews by students at the 
end of the semester ranking group members, groups, and the entire class in terms of their contributions to the project 
successes and/or failures.  Since the detailed specifications are developed as part of the project for this type course, 
there is not as much investment on the part of the instructor before the project (course) begins.  However, it is 
important that the project be successful for the students and, hence, it is important that sufficient time and effort 
goes into defining the project at all levels of detail to help ensure that the project has a high probability of success. 

VLSI Design and Testing 

VLSI courses are focused by nature on hardware projects while in practice there are often software interfaces and 
implications associated with the system-level operation of many VLSI designs.  As a result, VLSI design projects 
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that include processor interfaces and timing requirements provide students with a better understanding of 
hardware/software interfaces.  The overall operation of the design in the intended system is also an important aspect 
for students in understanding the importance of design specifications as they relate to proper system operation.  
Since the focus of the project is typically a single VLSI device, a project of sufficient complexity to warrant 
partitioning of the design into 3 to 4 subcircuits with each student designing a particular subcircuit while forming 
groups to complete the chip design provides the students with a more realistic experience in current VLSI design 
methodologies.  Therefore, detailed specifications should be developed prior to the project (course) where the chip 
architecture is partitioned into subcircuits of approximately equal complexity.  The class can then be broken into 
groups of 3 to 4 students for each chip with each student in the group responsible for the design of a subcircuit.  
Initially each student will design their subcircuit at the logic gate level that corresponds to the implementation 
technology (for example, NAND, NOR, AND-OR-Invert, and OR-AND-Invert gates with appropriate fan-in 
limitations for CMOS technology) and verify their design via logic simulation.  To ensure that each design works, 
the instructor should independently develop design verification vectors that thoroughly test each subcircuit against 
the specifications and requirements. Each group would then combine their subcircuit gate-level models to simulate, 
debug as needed, and verify their chip meets the chip-level specifications via logic simulation.  Once again, each 
chip should be tested by a set of vectors developed by the instructor to thoroughly verify the operation of the chip 
according to the specifications.  It is important that the students are not given access to these independent test 
vectors; otherwise they will not develop the skills needed for developing design verification vectors in industry. At 
this point in the project, each student is responsible for the physical design and verification of their subcircuit, 
followed by independent verification by the instructor.  The group then puts their chip together near the end of the 
semester and verifies operation with independent verification by the instructor prior to submission to MOSIS. 

In a subsequent VLSI testing course, students can develop test vectors to achieve some specified fault coverage (for 
example, greater than 95% using the single stuck-at gate fault model) and test the fabricated chips when they come 
back from MOSIS.  In this case, the specifications developed for the VLSI design course are used by the students in 
the testing course to understand the architecture and operation of the chip in order to develop test vectors as well as 
to understand the architectural and design issues that affect the testability of the device.  Students that take both the 
VLSI design course followed by the testing course test their own chip and, aside from a greater feeling of 
ownership, see first hand how their design could be made more testable.  On the other hand, students that did not 
take the VLSI testing course gain experience in understanding specifications as well as understanding another 
person’s design as they relate to testing and test development. 

HDL and Programmable Logic 

VHDL and Verilog with subsequent synthesis into an FPGA or CPLD allow students to manage more complex 
designs than in the case of the gate and transistor level VLSI design.  The same specifications used in the VLSI 
class can be used for the VHDL/Verilog course.  However, when synthesizing into FPGAs or CPLDs, the 
specifications may need to be modified to reflect features and/or limitations of the implementation technology.  In 
this case, each student can easily model the entire chip that required several students in the VLSI design course.  
Using the same specifications and partitioning of subcircuits as was used in the VLSI design course helps students 
in the VHDL/Verilog course to gain experience with hierarchical modeling and design verification.  Students who 
take the VLSI design course and then the VHDL/Verilog course obtain an appreciation not only for the efficiency of 
designing with HDLs in conjunction with synthesis CAD tools but also for techniques for writing VHDL models for 
optimized synthesis results as a result of their intimate knowledge of the gate level design of the project. 

Overview of Previous Projects 
Overviews of various projects that have been developed by the author and used in multiple classes are listed below.  
A more detailed overview of the logic analyzer projects is given in the next section along with an example of 
detailed specifications used in a VLSI design, VLSI testing, and VHDL courses.  A controller for an electrostatic 
particle separator was suggested as a project by the University of Kentucky Center for Applied Energy Research.  
The electrostatic particle separator is used to remove carbon from fly ash at coal burning power plants so that the fly 
ash can be sold as a concrete additive; otherwise, ash with high carbon content must be discarded as waste material 
at the expense of the power plant.  The Built-In Self-Test (BIST) project was suggested by the US Air Force for 
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testing mixed-signal systems. This BIST project was later funded by the US Air Force and DARPA for graduate and 
undergraduate research with the VLSI devices designed in the VLSI class as well as the VHDL models developed 
in the VHDL class used to construct hardware/software units for evaluation of the BIST approach on various 
mixed-signal benchmark circuits.  The test machine for VLSI devices was a hardware/software co-design project 
suggested by Oak Ridge National Laboratory as a low cost solution to testing digital devices being designed at their 
facility and fabricated through MOSIS.  The only hardware projects that did not have a software counterpart were 
the FPGA, CPLD, and microprocessor projects; yet, compiler and programming software for all three of these 
devices could have been incorporated to create a more complex system for a capstone design project, for example.  
As can be seen from the summary below, most of these projects were used in multiple courses. 

Logic Analyzers and Data Acquisition Systems  
1. PC-Based Logic Analyzer: Prototype hardware/software co-design in Senior Capstone Design (Fall 1994) 
2. Embedded Logic Analyzer for FPGAs and CPLDs: Parameterized VHDL with prototype hardware/software co-

design in Senior Capstone Design (Fall 1999) (for more details see reference 1) 
3. Logic Analyzer on a Chip: Design and fabrication via MOSIS in VLSI Design (Fall 1999), test development 

and testing of MOSIS TinyChips in Digital System Testing (Spring 2000), modeling and synthesis in FPGAs in 
Intro to VHDL (Spring 2000) (detailed specifications for this project are provided in the next section) 

Micro-Controllers 
1. 8-bit Microprocessor: Design and fabrication via MOSIS in VLSI Design (Fall 2000), test development and 

testing of fabricated MOSIS TinyChips in Digital System Testing (Spring 2001), modeling and synthesis in 
FPGAs in Intro to VHDL (Spring 1999) 

2. Controller for Electrostatic Particle Separator: Design and fabrication via MOSIS in VLSI Design (Fall 1998), 
test development and testing of fabricated MOSIS TinyChips in Digital System Testing (Spring 1999), 
modeling and synthesis in FPGAs in Intro to VHDL (Fall 1997) 

Built-In Self-Test and Test Machines 
1. Mixed-Signal Built-In Self-Test, Version 1: Design and fabrication via MOSIS of Test Pattern Generator and 

Output Response Analyzer TinyChips in VLSI Design (Fall 1997), test development and testing of fabricated 
MOSIS TinyChips in Digital System Testing (Spring 1998) (for more details see references 2, 3, and 4) 

2. Mixed-Signal Built-In Self-Test, Version 2: Design and fabrication via MOSIS of Test Pattern Generator and 
Output Response Analyzer TinyChips in VLSI Design (Fall 2001), test development and testing of fabricated 
MOSIS TinyChips in Digital System Testing (Spring 2002), modeling and synthesis in FPGAs in Intro to 
VHDL (Spring 2002) (for more details see reference 5) 

3. Test Machine for VLSI Devices Fabricated through MOSIS, Version 1: prototype TTL-based 
hardware/software co-design in Senior Capstone Design (Spring 1994) (for more details see reference 6) 

4. Test Machine for VLSI Devices Fabricated through MOSIS, Version 2: Design and fabrication via MOSIS in 
VLSI Design (Fall 1995), printed circuit board design and fabrication for MOSIS TinyChip-based test machine 
and software for bi-directional I/O control of test machine in Independent Study (Spring 1996) 

5. Test Machine for VLSI Devices Fabricated through MOSIS, Version 3: FPGA-based hardware/software co-
design in Senior Capstone Design (Fall 1996) 

Programmable Logic 
1. Look-Up Table Based FPGA: Design and fabrication via MOSIS in VLSI Design (Fall 2002), test development 

and testing fabricated MOSIS TinyChips in Digital System Testing (Spring 2003) 
2. Re-programmable PLA-Based CPLD: Design and fabrication in VLSI Design (Fall 1996), test development 

and testing fabricated MOSIS TinyChips in Digital System Testing (Spring 1997) 

Specifications Example:  Logic Analyzer 
The logic analyzer was first implemented as a TTL SSI/MSI-based wire-wrap board that interfaced to a PC for 
graphical control and display in a capstone design course in fall of 1994.  During the summer of 1999, Cypress 
Semiconductor inquired about the effort required to implement an embedded logic analyzer for their Delta 39K® 
series CPLDs.  Their inquiry lead to an second capstone design course in fall of 1999 where a parameterized VHDL 
model was developed for inclusion with a user’s system function VHDL and subsequent synthesis into a Cypress 
39K CPLD.  This project resulted in the development of an actual product for Cypress Semiconductor (similar to 
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SignalTap® from Altera) and was a predecessor to ChipScope® from Xilinx.  Since the capstone design project 
took place before the introduction of the Cypress 39K CPLD, the project included the development of a wire-wrap 
board that emulated a 39K CPLD using multiple Cypress 37K CPLDs and Random Access Memories (RAMs).  The 
same basic project was modified such that the design would fit into a MOSIS TinyChip and used in the VLSI design 
and testing courses and again in the Intro to VHDL course.  The following subsections give the specifications as 
given to students in the VLSI design and VHDL courses. 

Architectural Overview 

The Logic Analyzer (LA) chip is a device intended for inclusion on a Printed Circuit Board (PCB) such that system 
signals (data and/or control) on the PCB can be sampled on-line, in real time, for off-line display of the sampled 
signal waveforms on a PC.  When the LA is incorporated onto a PCB, 8 candidate signals for sampling along with a 
sampling clock hardwired to the LA chip.  Then the LA chip can be programmed for the desired triggering and 
sampling operation during the operation of the system.  The LA chip is partitioned into five basic components: the 
Micro-Processor Interface (MPI), the Trigger circuit (TRIG), the Sample Memory (SMEM), the Address controller 
(ADD), and the Programmable Interconnect Module (PIM), as illustrated in Figure 1.  The PIM allows the user to 
select up to 4 signals to sampled from a total of 8 input signals with the same 4 signals selected for establishing the 
triggering condition.  The TRIG allows the user to define the triggering conditions in a sum-of-products (or product-
of-sums) form with up to 2 product terms for the 4 signals selected by the PIM.  The SMEM is the sample memory 
where signal values are stored in sequence once the LA has been triggered; the SMEM can store up to 16 
consecutive samples of the 4 selected signals to be sampled.  The triggering process consists of programming the 
PIM and TRIG and then arming the LA; after which, once the triggering condition has been observed, the sampling 
process begins.  Alternatively, the LA can be manually triggered.  The ADD is used to control the sequencing of the 
SMEM sample storage locations for writing (once the LA has been triggered) and for reading (for data transfer to 
the display software running on a PC).  Finally, the MPI provides the user with an interface for programming the 
PIM and TRIG, arming the LA, and reading the SMEM once the LA has been triggered and the sampling process is 
complete. 

Primary Input/Output Pins: 
SIGNAL NAME I/O DESCRIPTION 

DIN3-0 I 4-bit input write data for the MPI, PIM, and TRIG registers 
ADD2-0 I 3-bit address for selecting register where DIN is to be written or DOUT is to be read from 
STROBE I Active low enable input for MPI operations 
CLK I Sample clock input 
INP7-0 I Data input channels for sampling and triggering source selection 
DOUT3-0 O 4-bit output read data from SMEM3-0 (CNT3-0 from ADD when TestReg0=1 & TestReg1=0, 

PIM3-0 when TestReg1=1 & TestReg0=0) 
BUSY  Active high output indicating active MPI operation or LA is armed but not done sampling 

BUSY returns to 0 after MPI operation or when sampling is finished 
DONE  Active high output indicating LA has been armed, triggered, and has finished sampling 
TRIG  Active high output indicating LA has been armed and triggered (PTRG from TRIG if 

TestReg0 does not equal TestReg1) 

Register Address Map: 
ADD2 ADD1 ADD0 MPI Operation (active STROBE) DIN/DOUT3 DIN/DOUT2 DIN/DOUT1 DIN/DOUT0 

0 0 0 Control Register (DIN bits) SOP/POS * RESET ** TESTREG1 TESTREG0 
0 0 1 Manually Trigger Logic Analyzer X X X X 
0 1 0 Arm Logic Analyzer X X X X 
0 1 1 Advance SMEM Add (DOUT bits) SMEM BIT3 SMEM BIT2 SMEM BIT1 SMEM BIT0 
1 0 0 Write PIM0/TRIG Bit PT1 (DIN bits) BIT3 BIT2 BIT1 BIT0 
1 0 1 Write PIM1/TRIG Bit-Bar 1 (DIN bits) BIT3 BIT2 BIT1 BIT0 
1 1 0 Write PIM2/TRIG Bit 2 (DIN bits) BIT3 BIT2 BIT1 BIT0 
1 1 1 Write PIM3/TRIG Bit-Bar 2 (DIN bits) BIT3 BIT2 BIT1 BIT0 

Notes: * SOP/POS implements product-of-sums in TRIG when this bit=1, otherwise sum-of-products 
** RESET resets TRIG, DONE, BUSY output flags and ADD to all 0s (when this bit=1) 
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Control Bits: 
TESTREG1 TESTREG0 Test Mode/Register Selection 

0 0 DOUT3-0 <= SMEM3-0/Select PIM Registers 
0 1 DOUT3-0 <= CNT3-0/Select PIM Registers  
1 0 DOUT3-0 <= PIM3-0/Select TRIG Registers 
1 1 DOUT3-0 <= SMEM3-0/Select TRIG Registers 

General Operation 
LA Initialization:  The LA can be initialized by writing address 000 with data X1XX (note address and data bit 
ordering is from MSB to LSB) followed by a rising edge of CLK.  This resets the output flags (BUSY, TRIG, and 
DONE) to 0, resets the ADD circuit to SMEM address location 0, and disarms the LA by setting internal signals 
WR and CEN to logic 0. 
PIM Programming:  The input channels to be sampled can be selected by writing address 000 with XX00 to select 
access to the PIM.  Then each of the sample PIM registers can be written via addresses 100 through 111 for 
registers 0 through 3, respectively, which in turn control which input channel will be sampled and stored in SMEM 
bits 0 through 3, respectively,  as well as then inputs to the TRIG inputs 0 through 3, respectively.  The 3-bits of 
data written to each of these registers indicates which of the 8 input channels will be selected for sampling with data 
000 selecting IN0, and so on, up to data 111 selecting IN7. 
TRIG Programming:  The triggering conditions that will initiate the sampling process can be established by 
programming sum-of-product equations into the 2 product term bit and bit-bar registers of the TRIG.  These can be 
accessed by writing address 000 with XX11 to select the 2 product term bit registers and the 2 product term bit-bar 
registers.  Note that since both product terms are ORed together, then all 4 registers must be written with valid data 
to ensure proper operation of the triggering condition.  A logic 1 written into a given bit or bit-bar register will 
activate that input or inverted input, respectively, as a literal in that respective product term.  Note that a logic 0 
written into both bit and bit-bar registers will disable that input from activating the product term, while a logic 1 
written into both the bit and bit-bar registers will mean that the literal is always active.  In order to maximize the 
effectiveness of the 2 product term limit, product-of-sum expressions can be programmed by writing address 000 
with 1XXX which, in turn, inverts the output of the PLA. 
Trigger Activation:  Once programmed, the LA can be armed by writing address 010 with XXXX. When the trigger 
condition specified by the product terms has been satisfied, the sampling sequence will begin.  Alternatively, the LA 
can be manually triggered (to force the sampling sequence to begin independent of the programmed trigger 
conditions) by writing address 001 with XXXX.  Note that to re-arm the LA, reset the LA and then address 010 or 
001 must be re-written to XXXX (depending on the desired triggering) once the sampling sequence is completed. 
Sampling Sequence:  Once the LA has been triggered, the logic values of the 4 selected inputs to be sampled will 
be stored in the SMEM memory locations during each clock cycle of the selected input sampling clock.  The ADD 
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Figure 1.  Block Diagram of Logic Analyzer Chip 
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controls sequencing through the address locations of the SMEM until all memory 12 locations in the SMEM have 
been written with sampled data, at which time the ADD discontinues operation in order to avoid overwriting the 
stored samples (the ADD should return to the first SMEM location that was written in order to prepare for the data 
retrieval process). 
Sampled Data Retrieval:  Once the sampling sequence is completed, the sampled data stored in the first SMEM 
location will be present at the DOUT3-0 outputs (as long a TESTREG0=TESTREG1, indicating a non-test mode).  The 
SMEM location output to DOUT3-0 can be advanced by writing address 011 with XXXX.  This process (writing to 
address 011) is repeated until the entire SMEM has been read (all 12 memory locations).  At this point, the LA can 
be reprogrammed and/or reset then re-armed so that a new set of data samples is taken. 
Output Flags:  BUSY will normally be 0 but will go to a 1 during any MPI operation (anytime STROBE=0, 
BUSY=1, until STROBE goes back to 1).  BUSY will also go to a 1 once the LA has been armed (or manually 
triggered) and will stay at logic 1 until the sampling sequence has been completed, then BUSY will go back to 0.  
TRIG will also normally be 0 but will go to a 1 once the LA has been triggered and will remain 1 until the LA is 
reset (disarmed) by writing address 000 with X1XX, at which time TRIG returns to 0.  DONE will normally be 0 
but will go to 1 once the sampling sequence is complete and will remain 1 until the LA is reset (disarmed) by 
writing address 000 with X1XX, at which time DONE returns to 0. 

Subcircuit Specifications 

PIM – Programmable Interconnect Module: 
Inputs (16 inputs): INP7-0, DIN2-0, WEP3-0, STROBE 
Outputs  (4 outputs): PIM3-0 
Description:  The PIM consists of 4 identical subcircuits with each of these consisting of a 4-bit register and a 16-
to-1 multiplexer.  The data inputs to the multiplexer are the 8 input channels (IN7-0).  The data inputs to the PIM 
registers are the 4-bit data bus (DIN3-0).  WEP3-0 & are 4 active high write enables for the PIM registers.  The PIM 
registers consist of flip-flops (clocked on the rising edge of STROBE) with the outputs of each register driving its 
respective multiplexer in order to select 1 of the 8 input channels. 

TRIG – Trigger Circuit: 
Inputs  (21 inputs): PIM3-0, DIN3-0, WEB1-0, WEBB1-0, POS, ARM, MAN, RST, TESTREG1-0, STROBE, 

CLK 
Outputs  (2 output): TRIG(PTRG),TRIG (to ADD) 
Description:  The TRIG circuit is a Programmable Logic Array (PLA) with a fully programmable AND-plane and a 
fixed OR-plane.  The AND-plane consists of 2 product terms of bit and bit-bar for the 4 inputs (PIM3-0).  The 
literal selection (bit, bit-bar, or neither) for each product term is determined based on the contents of two 4-bit 
registers (one for bits and one for bit-bars) where a logic 1 will active the associated literal.  The data inputs to the 
product term registers is the 4-bit data bus (DIN3-0) and the data is written into the registers based on the active 
high write enables (WEB1-0 and WEBB1-0).  The outputs of the PLA (PTRG) will be inverted for product-of-sums 
implementations when POS=1.  The product term registers consist of  flip-flops (clocked on the rising edge of 
STROBE) with the outputs of these registers driving the programmable AND-plane.  The principle output of the 
TRIG circuit is the active high signal TRIG which drives the ADD circuit and indicates that a trigger condition has 
been encountered (indicated by a one on the PTRG output of the PLA).  Either when ARM is high and PTRG goes 
high or when MAN goes high, TRIG goes high on the rising edge of CLK and remains high until RST is activated, 
at which time TRIG resets.  The TRIG signal is also a primary output of the LA, however, during test mode (when 
TESTREG0 is not equal to TESTREG1) the PLA output PTRG is sent out on the primary output (but not to the 
counter). 

SMEM – Sample Memory:  
Inputs  (10 inputs): PIM3-0, CNT3-0, WE, CLK 
Outputs  (4 outputs): DO3-0 
Description:  The SMEM is a Random Access Memory (RAM) with 16 address locations and 4-bit data words per 
address location.  The input data to be written into the RAM comes in on PIM3-0.  The output data read from the 
RAM (as specified by CNT3-0) goes out on SMEM3-0 to the MPI where they are read out on DOUT3-0.  The write 
enable for the RAM (WE) is also active high such that a given address location i (as specified by CNT3-0) is written 
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with the input data only when WE=1 on the rising edge of CLK.  As a result, each single bit memory location 
consists of a rising edge triggered flip-flop. 

ADD – Address Controller:  
Inputs  (4 inputs): CLK, RST, CEN, TRIG 
Outputs  (6 outputs): CNT3-0, DONE, WE 
Description:  The ADD is a 4-bit synchronous, rising edge-triggered, binary up-counter (clocked by CLK) with 
active high count enable (CEN) and active high synchronous reset (RST).  The outputs of the counter are CNT3-0.  
Note that RST takes precedence over all other functions.  A valid sampling sequence begins when TRIG goes high 
and the sampling sequence continues until all 12 memory locations have been written. At that point the counter 
produces the active high DONE when all counter bits have returned to logic 0 after the sampling sequence and 
counting discontinues.  Once DONE goes high, it remains high until RST is activated.  The count enable (CEN) 
from the MPI is used to advance the counter during the read cycle; the counter advances once and only once during 
the time that CEN is high and will not advance again until CEN goes low and then back high.  The address circuit 
also produces the active high write enable (WE) to control writing the SMEM during the sampling sequence.   

MPI – Micro-Processor Interface:  
Inputs  (22 inputs): STROBE, ADD2-0, DIN3-0, CNT3-0, SMEM3-0, PIM3-0, DONE 
Outputs  (20 outputs): DOUT3-0, BUSY, WEB1-0, WEBB1-0, WEP3-0, POS, RST, CEN, ARM, MAN, 

TESTREG1-0 
Description:  The MPI performs all interface functions between the LA and the PC.  All MPI operations to the LA 
via the PC are performed according to the timing diagram of Figure 2.  There is one control register (described 
above) which is written with the input data (DIN3-0) on the rising edge of STROBE based on the 3-bit address 
(ADD2-0) specified above.  Similarly, write operations to the PIM and TRIG registers are based on the 3-bit 
address (ADD2-0) and the values of TESTREG1-0 (as specified above) with the MPI supplying the active high write 
enable to the appropriate register.  As a result, this function can be performed using a decoder with inputs comprised 
of ADD2-0 and TestREG1-0.  Internal signals RST, POS, and TESTREG1-0 are simply the contents of the control 
register.  However, when RST=1, the output flag BUSY as well as the internal flag ARM should also be reset to 0 
such that the state of the LA is not armed, not triggered, and not waiting to complete the sampling sequence.  The 
BUSY output is a logic 1 whenever STROBE=0, also BUSY=1 when the LA is armed (or manually triggered) and 
remains a logic 1 until DONE goes active; otherwise BUSY=0.  The internal signal to the ADD circuit CEN is set to 
a logic 1 during the data retrieval process when STROBE=0 and ADD2-0=011 and this input condition must remain 
active for sufficient time for the ADD to one-shot off of CEN using the sample clock CLK (here we’ll assume that 

Figure 2.  Timing Diagram for Logic Analyzer MPI Operation 
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Figure 3.  Timing Diagram for Logic Analyzer Output and Internal Flags 
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time STROBE is low is longer than the period of CLK).  Normal operation at the primary outputs is achieved when 
TESTREG0=TESTREG1, otherwise when TESTREG0=1 and TESTREG1=0, internal signals CNT3-0 are brought out on 
the primary outputs (DOUT3-0) to facilitate improved design verification and testability, or when TESTREG1=1 and 
TESTREG0=0, internal signals PIM3-0 are brought to the primary outputs DOUT3-0.  Figure 3 illustrates the 
operation of the various output and internal flags for an arming of the LA.  The only difference in the case of a 
manual trigger is that PTRG is ignored and TRIG immediately goes high (on the next active edge of CLK) such that 
the sampling sequence begins. 

Summary and Conclusions 
Complex specification-based projects for capstone design, VLSI design and testing, and HDL and programmable 
logic courses provide students with experience that is closely related to the industry environments in which they will 
be working.   These projects expose students to the need to understand and pay careful attention to the details of 
specifications associated with the design to minimize design errors and ensure smooth system-level integration.  
However, to maximize the effectiveness of these projects, it is important that the specifications be detailed and 
accurate.  This requires considerable time on the part of the instructor to verify the specifications as well as the 
design prior to the beginning of the course in order to minimize student frustrations associated with changing 
requirements (they will get plenty of that in industry).  Based on the author’s experience, a capstone design project 
requires at least two weeks of concentrated effort to develop specifications for the project.  While these 
specifications are not generally given to the students in their entirety since the students help to develop the system 
requirements and specifications as part of the project, the independent development of specifications by the 
instructor helps to ensure that the project is challenging but achievable with a high probability for successful 
completion.  The development of a good set specifications for a VLSI design class usually requires about four 
weeks which includes gate-level design and design verification, a by-product of which is the design verification 
vectors that would be used to independently verify that student designs meet the specifications for the subcircuits as 
well as the complete chip.  Less time is required to develop specifications for projects for VHDL/Verilog courses 
since the HDLs deal with a higher level of design abstraction.  However, the specifications developed for the VLSI 
design course can be used with little or no modifications in VHDL/Verilog courses.  Therefore, an initial investment 
in the development of a good set of specifications for a complex project can yield dividends through use in multiple 
courses as well as benefit many students with real industry-like experience in those courses. 
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