1

A Side Effect of Technology in Instruction?

Fred Hartfield

 Southern Polytechnic State Univ.

Marietta, Georgia 30060
Abstract

Many of the questions that computer science educators continually face are those associated with programming instruction and the purpose of such instruction. Which programming language should be used in an introductory course? How can we get students to move beyond the syntax and semantics of a high-level language so as to master the important concepts of algorithmic problem solving? Can the effect of such instruction promote general problem-solving skills? What instructional strategies might be used to increase students’ success in learning programming?

The recent proliferation of computer related technologies, which have made a significant impact on academic environments, might offer added value to its users. One such technology, multimedia and its related systems, are providing rich and varied alternatives for course delivery and instruction in many subject-matter domains. And while the use of such tools are most often used by the instructor to help orchestrate course delivery and other information presentations, this technology can potentially affect students’ intellect when the student becomes the author of various presentations and/or projects. Is it possible that multimedia authoring and presentation tools help students learn programming? Can such tools contribute to instruction intended to scaffold students as they learn to solve programming problems?

In order to respond to these questions this paper describes and defines multimedia authoring and presentation systems. Then identifies opportunities for these authoring tools to contribute to the process of learning programming.

Introduction

Considering the limited empirical support for a positive relationship between learning programming and the development of powerful general skills, as espoused by Papert(1980), researchers in this area have gravitated towards identifying appropriate methods of instruction as well as describing the cognitive consequences of learning computer programming (Mayer, 1988). In other words, instead of asking the question, “does learning programming enhance one’s thinking skills?”, it appears more appropriate to ask, “what are the cognitive effects of learning to write computer programs?” or “how does the method of programming instruction affect the students’ cognitive processes?”. The latter question stimulates much interest, especially given the recent proliferation of computer-related technologies which recently made a significant impact on academic environments. One such technology, multimedia and its related systems, is providing rich and varied alternatives for course delivery and instruction in many subject-matter domains. While the use of such tools is frequently utilized by instructors to help orchestrate course delivery and other information presentations, this technology can potentially affect students’ intellect if the student becomes the author of various presentations and/or projects. Considering these factors, one might ask, “is it possible for multimedia authoring and presentation tools to help students learn programming?” Even further, can such tools contribute to instruction that is intended to scaffold students as they learn to solve programming problems?

In an effort to respond to these questions, the present author will first describe and define multimedia authoring and presentation systems. Secondly, discussion will focus on research for teaching and learning programming. Lastly, attention will be directed to the identification of opportunities for these authoring tools to contribute to the process of learning programming.

Multimedia Authoring and Presentation Systems
The term multimedia is frequently used, yet rarely defined. This lack of definitional attention is likely due, in part, to the difficulty of specifying the essence of multimedia. However, there is one single point that all appear to agree on: the essential role of multimedia data. This point of agreement gives rise to the definition of multimedia coined by Feldman (1994) which stated that “multimedia is the seamless integration of data, text, images of all kinds and sound within a single, digital information environment” (p. 4).

Multimedia authoring systems represent a category of multimedia software that performs three key functions: (1) spontaneous presentation of information through text, graphics, audio, images, animation and/or full motion video; (2) a graphical user interface (i.e., a mouse, touch-sensitive screen, etc.); and, (3) nonlinear navigation through applications for access to information on request (Athappilly, Durben, & Woods, 1994). The preparation of multimedia material, particularly when used for presentations, training and/or entertainment, is referred to as authoring. During the preparation of multimedia material, the author uses various software tools that constitute the authoring system. These tools are used to help with the many steps involved in multimedia production.

Student Difficulties in Mastering Programming
In terms of focusing on the problems of the student, Du Boulay (1988) categorized five areas of difficulty which are likely to be encountered by the novice programmer. These five areas are:

·
Orientation. This first area of difficulty in programming is related to several issues which include: (a) knowing what programming is used for, (b) the kinds of problems that one might solve with programming, and (c) what are the advantages of expending effort to learn the skill.

·
The notional machine. In this area, problems can exist in understanding the general properties of the machine that one is learning to control, and their relationship to the physical machine.

·
Notation. Notation represents both syntax and semantics of the specified programming language.

·
Structures. Structures are plans that can be used to achieve small-scale goals within the program.

·
Pragmatics. This area relates to the students’ needs to learn how to design, develop, test, and debug a program.

There is some overlap among these areas because none of these issues are totally separable from the others. Additionally, much of the student's initial shock related to the first few encounters with the system are likely to be intensified as he or she attempts to cope with all the different kinds of difficulty at once.

Scaffolding
One potential method for enhancing students’ learning of programming is to provide support for such learning by using scaffolding. Scaffolding, as defined by Palinscar (1986), is the “process that enables students to achieve a goal that would be beyond their unassisted efforts.” Other researchers (e.g., Collins, Brown, & Newman, 1989; Rogoff, 1990) have provided models for the scaffolding of students engaged in construction activities such as programming.

The Collins, Brown and Newman model, which was presented in their description of cognitive apprenticeship, prescribed six teaching methods that an instructor could use to direct students engaged in learning-through-guided-activity (Collins, et al., 1989).

Many researchers (e.g., Farnham-Diggery, 1990; Guzdial, 1994; Rogoff, 1990) have used the Collins’ et. al. (1989) model of teaching activities to identify various methods teachers use to facilitate student learning of construction activities (such as programming). Noting that Collins’ et al. six teaching methods are not distinct classifications, Guzdial (1994) proposed that modeling, coaching, and eliciting articulation represent the three methods of scaffolding. With the teacher’s agency brought into focus, Guzdial defined these methods as follows:

·
Modeling - is defined as the communication of a process model to the student.

·
Coaching - entails guiding the students in the process while they work.

·
Eliciting articulation - involves getting the students to articulate their process and the process model.

Guzdial (1994) used the term process model to label the prescriptive model supplied by the teacher to support the student. In this case, a process is what the student does, or it is the dynamic execution of the process model. In order to formulate a process model to use in scaffolding, it is useful to probe an expert’s process, find a model that best describes it , and then reduce its complexity.

Reducing the complexity of the expert’s process has been considered by Fischer, Burton, and Brown (1978) and diSessa (1985). diSessa’s mental models of computation are similar to the process models described by Fisher, Burton, and Brown as simplifications of an expert’s process. The distinctions in process models gathered from these researchers are as follows.

·
Reduced process model - simplifies the expert process by removing some of its functionality.

·
Surrogate process model - uses an alternative, though, less complex model.

·
Distributed process model - combines the features of the reduced and surrogate models.

These models provide the teacher with prescriptive measures for simplifying the complexity of a process model. In other words, when process complexity exists because the model contains too many operations, too many content demands, or an inappropriate high-level structure, simplifications of the process are useful.

Opportunities for Authoring Tools to Aid Programming Instruction

As previously discussed, Du Boulay (1988) categorized five areas of difficulty that are likely to be encountered by the novice programmer. These areas included orientation, the notional machine, notation, structures, and pragmatics.

As it relates to these areas, however, a significant question emerges which is: How does the strategy of using mixed-media authoring systems measure up to the difficulties of learning to program as outlined by Du Boulay? A discussion of each area of difficulty will be reflected upon at this juncture, with claims that advocate for the relief of these difficulties. Where appropriate, an authoring feature is used to augment the instruction of the traditional text-based programming. These authoring features reflect those from Authorware, an iconic-based language system developed as a means of enabling individuals without interest or proficiency in traditional programming.

Orientation difficulty is embodied in questions such as: "For what purpose can programming be used?" or "What are the eventual advantages of expending efforts to learn this skill?" The use of Authorware allows an immediate orientation for its user. The user can easily create quick but powerful presentations that give immediate feedback and gratification. Combined with a constructivist approach, the student should be motivated by the quick empowerment to produce presentations (output) almost immediately.

The difficulty of understanding the notional machine may or may not be eased by the use of Authorware as a preface to learning a general purpose language. On the one hand, when using Authorware, the user need not be concerned with compilers (which add another layer of machine abstraction), or maybe more importantly, the concept of where the program is. The Authorware program is constructed by the user and remains immediately available while Authorware is being executed. In other words, the fact that Authorware continually makes the program available to the user may obviate the need of the user to relate to the notional machine. However, once this same user is introduced to a compiled general purpose language, the misunderstanding (if it exists) of the notional machine may be further magnified. Significant instructor mediation could be crucial in the transition from authoring language to general purpose language in the notional machine difficulty area.

In terms of notion, the belief is that by using the Authorware graphic icons of decision and interaction, the user is building a mental model of the concepts of decision and repetition which can be transferred to the general purpose programming arena. In addition to the use of the graphic symbols and the "flowline", Authorware also makes available an easy to learn programming environment that mimics those designed to be of general purpose. This includes the concepts and availability of variables, functions, and flow-of-control constructs such as "if" and "while". The inclusion of these features in the Authorware instruction is critical in the facilitation of the traditional language comprehension when the transition is made. If these features are appropriately introduced and used in Authorware, then much of the notation difficulty (syntax and semantics) should disappear.

As it relates to structures, the acquisition of standard structures by the student in Authorware may not be the same as acquiring structures (for example, in Pascal). However, the student would be exposed to planning to create small-scale plans or clichés that would enhance the production of programs in Authorware. If the student is made aware of this skill by the instructor, then some transfer of the concept might be expected in learning the general purpose language.

Related to pragmatics, Authorware provides the user with an environment that is similar to those in the traditional procedural-oriented language systems. Features such as a debugging tool and the ability to quickly develop and test, mirror the environments of many of the traditional computer programming languages. The difficulty of mastering the pragmatics of the traditional computer language should be greatly reduced.

In summary, Authorware provides strength in coping with the difficulties of learning to program as outlined by Du Boulay (1988). While the notional machine and structures difficulties may not be eased by using Authorware, a reduction in total user disorientation for the novice should enhance the learning of a traditional programming language.

References

Athappilly, K., Durben, C., and Woods, S. (1994). Multimedia computing: An overview. In S. Reisman (Ed.), Multimedia computing: Preparing for the 21st century. Harrisburg, PA: Idea Group.

Bush, V. (1945). As we may think. Atlantic monthly, 176(1), 101-108.

Collins, A., Brown, J., & Newman, S. (1989). Cognitive apprenticeship: Teaching the craft of reading writing, and mathematics. In L. B. Resnick (Ed.), Knowing, Learning, and Instruction: Essays in honor of Robert Glaser. Hillsdale, NJ: Lawrence Erlbaum and Associates.

diSessa, A. (1985). A principled design for an integrated computational environment. Human-Computer Interaction, 1(1), 1-47.

Du Boulay, B. (1988). Some difficulties of learning to program. In E. Soloway & J. Spohrer (Eds.), Studying the novice programmer(pp.283-299). New Jersey: Erlbaum.

Farnham-Diggory, S. (1990). Schooling. Cambridge, MA: Harvard University Press.

Feldman, T. (1994). Multimedia. London, UK: Chapman & Hall.

Fischer, G., Burton, R., & Brown, J. (1978). Aspects of a theory of simplification, debugging, and coaching, (Technical Report No. 3912), BBN Labs.

Guzdial, M. (1994). Software-realized scaffolding to facilitate programming for science learning. Interactive Learning Environments, 4(1), 1-44.

Mayer, R. (1988). Introduction to research on teaching and learning computer programming. In R. Mayer (Ed.), Teaching and learning computer programming: Multiple research perspectives. Hillsdale, NJ: Erlbaum.

Nelson, T. (1965). The hypertext. Proceedings of the world documentation federation.

Palincsar, A. S. (1986). The role of dialogue in providing scaffolded instruction. Educational Psychologist, 21(1-2), 73-98.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.

Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.

Wu, Q., and Anderson, J. (1992). Knowledge transfer among programming languages. Proceedings of the Fifth Workshop of the Psychology of Programming Interest Group.

Fred Hartfield - is an Associate Professor of Computing And Software

Engineering at Southern Polytechnic State University in Marietta, GA.

He developed software professionally for 12 years prior to coming to

SPSU in 1984. He holds undergraduate and masters degrees in

Mathematics and recently received an Ed.S in Instructional Technology.

