
2001 ASEE Southeast Section Conference
1

Can't Decide? Use them all!

Gary Johnsey1

Abstract

Students often study programming languages in a limited context, totally focusing on one language
at a time. However, large, distributed software systems often rely upon diverse programming
languages This is particularly true of Internet applications where a single client session might use
products written in 5 or more languages. Interfacing and integration issues can create significant
problems. An exercise was designed for the Computer Engineering Technology Program at the
University of Southern Mississippi highlighting some of these issues . The exercise involved the use
of a large number of languages across three hardware platforms, e.g. Perl, Visual Basic, C++,
68hc11 Assembly Language, Small C. It specifically focused upon data delivery and control over an
interactive network, the Internet. The student's task was to design a software system that would
allow a browser-active client to display data collected by a remote microcontroller. The client was
also to provide control inputs, i.e. setpoints, for the microcontroller. The paper focuses on the
academic exercise rather than the technical details.

Introduction

A capstone exercise was designed after observing that senior and other projects dealt primarily with
hardware and hardware interfacing but rarely with issues deriving from diverse software or
software interfacing. The exercise was conducted in the summer of 2000 with Computer
Engineering Technology (CET) students at the University of Southern Mississippi (USM). Its
purpose was to create a complex, network-based, software-systems by combining diverse language
components, i.e. by throwing a lot of languages at a problem to see how well they work together.
How effectively each software component participated in the overall system was more important
than the strengths and weaknesses of the individual programming languages. The goal of the
exercise was to focus on the interfaces/integration of the software components and not upon their
individual complexity. This paper might have been entitled "Interactive Control of Remote Data

1 Assistant Professor of Computer Engineering Technology, University of Southern Mississippi, P.O. Box 5137,
Hattiesburg, MS, 39406-5137.

 Rack Mounted Intel Server
 Command Interface
 (Visual Basic, C++)
 Serial Communications
 Protocol
 Database Access
 Web Service (Perl)
 Dynamic Page Delivery
 Form Processing
 Database Access

 Internet-Connected Client
 Browser
 Page Display
 Form Processing

Form Data

Web Page

Internet

5. Assem. Language
6. Small C

Win98
Apache
PHP
MySQL

Netscape
JavaScript
1. HTML Figure 1

2. Perl
3. C++
4. VBasic

 68HC11 Microcontroller
 Supervisor (Small C)
 Protocol
 SW Integration
 Data Logging
 Control (Asm)
 A/D Conversion
 Control Logic
 Output Control
 Buffalo (Machine Code)
 Serial Communications

Cmds/SW

Data

Serial Link

2001 ASEE Southeast Section Conference
2

Logging" but that title would have been misleading, i.e. highlighting the hardware functions and
not the software interfacing.

Figure 1 illustrates the complete networked control loop along with the relationships between the
hardware and software. The students' task was to collect temperature data using a microcontroller
single-board-computer (sbc). This sbc was to be connected by a serial link to a network server,
providing the data on request (and accepting commands and/or control data). The server-based
software was to store the data in either a flat file or relational database file. This data was to be
subsequently included in a web page. The task provided to the students was in fact only guidance.
Student teams were to evaluate different solutions and select individual approaches and
programming languages. The only real requirement was that each major link, local-serial or
Internet, be interactive. Figure 1 represents one choice of a hardware configuration. Other choices
included industrial, wall-mounted cases for the server and i386SX sbc's for the data logger. The
exercise also included hardware installation and configuration, e.g. motherboards and interface
cards, along with operating system installation, e.g. Windows 98 or Linux. However, this paper
does not address the installation and configuration portion of the exercise.

Background

The capstone project in the CET program at USM does a good job of incorporating electronic and
computer-hardware knowledge from earlier courses. However, the individual projects generally use
no more than one programming language, and practically never interface different language
products. The required Computer Science courses focus on individual programming languages with
perhaps a discussion of weaknesses and strengths but no integration or interfacing. This academic
experience does not adequately represent the environment of modern, network-based applications.
Each team of 2 to 4 students was given general guidance, but few restrictions. Their hardware and
software solutions varied, but certain design elements were popular. The following description
represents a typical example.

System Description

The system description begins with the microcontroller software components. Although the teams
tended to develop the different software components concurrently, installation and testing
progressed from the microcontroller to the server, then to the client browser, and back along the
same path to the microcontroller. The following discussion uses this same sequence, starting with
the microcontroller-based components.

Microcontroller - Small C, Machine Code, and Assembly Language

 68HC11 Microcontroller
 Supervisor (Small C)
 Protocol
 SW Integration
 Data Logging
 Control (Asm)
 A/D Conversion
 Control Logic
 Output Control
 Buffalo (Machine Code)
 Serial Communications

Cmds/SW

Data

Serial Link

Figure 2

2001 ASEE Southeast Section Conference
3

Consider the 68hc11 sbc, Figure 2, and its three software components, Buffalo, Control, and
Supervisor. Buffalo comes pre-installed on the Axiom sbc the students use, and provides a
development environment with typical monitor-type features, memory dump, in-line assembly,
single-stepping, etc. It is normally used in an interactive terminal mode, but works just as well
receiving commands from software over the serial link. Buffalo was used as a stand-in for
Supervisor during the prototyping stage. In other words a Visual Basic (VB) program ran on the
server using timer and communication controls. It provided a steady flow of data/commands,from a
script to aid prototyping and development. Buffalo was not needed after the Supervisor was
installed but portions were called as subroutines.

The Supervisor, written in Small C, was to replace Buffalo with a higher level protocol, interfacing
with the communications link on one hand and the control functions on the other. However, as
indicated above, the Buffalo machine code would never be totally abandoned. Supervisor would rely
upon Buffalo's interrupt-driven, communication subroutines. This reliance actually enhanced the
integration goals. These subroutines are not well documented, and their use required reverse
engineering and interfacing between machine code and the Small C based Supervisor objects. This
Small C compiler provides a limited subset of the C language, and has two specific advantages for
this application. First, it produces reasonably small object code. Second, it produces Assembly
Language objects, not machine code. This made it very easy to study the parameter passing
conventions. The students could easily mimic these conventions when using Assembly Language to
write the Control component as discussed next. In other words the compiled objects from Small C
are in Assembly Language and are, thus, easy to study. The inefficiencies of this non-optimizing
compiler were obvious, especially in such a small implementation of C. Both the 68hc11 Assembler
and the Small C compiler were used in an earlier course, so there was little surprise over these
observations. The Supervisor code was never developed beyond the rudimentary prototype (possibly
due to distractions). However, even in this rudimentary form it provided the necessary interfacing
between the communications, data collection, and control functions.

The Control software was almost as simple as the rudimentary Supervisor, primarily because the
emphasis was on communication and interfacing, and not on control algorithms. When installed,
the Control software responded to a timed interrupt, performing analog to digital conversions on 4
channels and storing the values. The Supervisor reported these microsecond-old values when
requested. The intent was to provide the control engine with a set point (temperature) to be
maintained with local feedback and control. In this first effort potentiometers (in place of
thermistors) and light-emitting diodes (in place of heating elements) were used. The students
concentrated on the more risky tasks, i.e. the Internet interactivity.

Internet Server - Visual Basic, C++, Perl

 Rack Mounted Intel Server
 Command Interface
 (Visual Basic, C++)
 Serial Communications
 Protocol
 Database Access
 Web Service (Perl)
 Dynamic Page Delivery
 Form Processing
 Database Access

Figure 3

Cmds/SW

Data

Serial Link

Form Data

Web Page

Internet

2001 ASEE Southeast Section Conference
4

The microcontroller, as discussed above, hosted two primary software functions, communications
(Supervisor) and productive input/output (Control). The server hosted similar functions, serial
communications (Command Interface) and productive Internet input/output (Web Service). See
Figure 3.

However, the server-based, software design was considerably different from the microcontroller
component interfaces. The interfaces between the microcontroller components were "tight," i.e.
direct subroutine calls or shared memory cells. In the server-side design, data was exchanged using
the operating system's file-handling facilities, a loose coupling. Data from the microcontroller-based
Supervisor was stored in a simple file, a flat file, by the Visual Basic Command Interface. Data from
this file was read by the Perl interpreter (Web Service) for inclusion in a Web page. Data types in
the two languages, VB and Perl, do not necessarily have compatible structures. The design of the
shared file required considerations supporting the purpose of the exercise, i.e. language integration
and interfacing. I allowed a simple solution in this exercise, a text file, but will probably require
popular data structures in the future.

The Command Interface on the server performed a similar function to the microcontroller's
Supervisor. It provided serial communications, and a command protocol. It also delivered a script
that directed the operation of the microcontroller. This script, a command list, was simple and was
stored within the Visual Basic program. However, it could have been more complex and stored in a
separate file. Visual Basic proved to be well suited for prototyping, e.g. it was easy to make quick
modifications, and to immediately observe the results.

The design of the Web Server component was more varied. The primary function of this component
was dynamic Web-page creation. The most common approach in industry, and the one used by the
students, is to use the Common Gateway Interface (CGI) facilities available on Web servers such as
Apache. There is a trend for modular expansion of the server to directly interpret such languages
as PHP (Originally named "Personal Home Page" but its use has grown beyond personal
applications) resulting in faster page delivery. When the Web Server software detects that a CGI
compatible program is to be used it delivers the output from that program directly across the
Internet to the client browser. Essentially the only requirement is that the CGI program be capable
of using standard output and standard input (if data is to flow in both directions). You can use Perl,
Visual Basic, C++, and other languages to create a CGI program. At least one team in this exercise
used each of these languages for this purpose. Perl proved to be a powerful text processor. Visual
Basic proved the easiest to use. C++ proved to be reasonable at this task. The CGI technology may
be replaced in the near future if current trends continue. Candidates include Active Server Pages
(ASP) and PHP (PHP uses a Web-page embedded script that is activated server side). PHP
development is extremely easy and fast. It even emulates some of the text processing features of
Perl. There is amply opportunity to reflect new software technology in this type of exercise.

Internet Client - HTML

The pages delivered by the Web Service component were delivered across the network and
displayed using the Netscape and/or Internet Explorer browsers at the client computer. These pages
contained simple HTML tags, graphics, data, and a form for providing commands and setpoints for
the microcontroller. Client-side languages, e.g. Javascript, Vbscript, could have been used but were
not in this first effort. It is not entirely clear how their use would have exemplified software
interfacing.

The HTML code was generated at the server, but the data was displayed and the input collected at
the client computer. The cross-platform diagnostics and troubleshooting provided a final interfacing
challenge for the students.

2001 ASEE Southeast Section Conference
5

Conclusions

By relying upon previous course work it was possible to design a practical exercise emphasizing the
interfacing and integration problems of using a large number of programming languages for problem
solutions. The interfaces requiring design decisions by the students are identified in Figure 4.

There are several changes/enhancements under consideration for the next exercise.

1. The microcontroller's output should be interfaced to functional hardware,
but not as to divert too much attention from the software issues.

2. The Control software should contain a feedback loop, perhaps imported
from an earlier class.

3. The Supervisor protocol should be expanded, e.g. software downloads,

individual output pin controls.
4. The server-side data file should mimic more typical data files with various

data types.
5. Alternative languages should be considered, e.g. Java, PHP, ASP, XML.
6. The HTML form should include options to display the data, e.g. a listing, a

graphic, a histogram.

References

Laura Parker Roerden (1997) Net Lessons: Web-Based Projects For Your Classroom, O'Reilly,
Sebastopol, CA.

Eric F. Johnson (1996) Cross-Platform Perl, M&T Books/Henry Holt and Company, Inc, New York,
New York.

Walter Savitch (1999) Problem Solving with C++, Addison Wesley, Reading, Massachusetts.

Chris Loosley, Frank Douglas ((1998) High-Performance Client/Server, John Wiley & Sons, New
York, New York.

Gary Nutt (1999) Operating System Projects Using Windows NT, Addison Wesley, Reading
Massachusetts

Control
(ASM)

Supervisor
(Small C)

Buffalo
(Machine)

Command Interface
(Visual Basic)

shared memory

subroutine calls

serial

cmd protocol

Web Server
(Perl, C++, VB)

data file

Client
(HTML)

Internet
CGI Interface

Figure 4

2001 ASEE Southeast Section Conference
6

7. Gary Johnsey
Gary Johnsey is an Assistant Professor of Computer Engineering Technology at the University of Southern
Mississippi. He received his BS in electrical engineering from Auburn University, his MS in telecommunications
from the University of Southern Mississippi and his MS in electronics engineering from the University of Missoury
at Columbia. His interests lie in the areas of embedded computer hardware and software. He is a member of ASEE
and often serves as division officers for the Southeastern Section of the ASEE.

