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Explaining Convolution Using MATLAB 
Thomas Murphy1 

Abstract 

Students often have a difficult time understanding what convolution is. Students can often evaluate the 
convolution integral (continuous time case), convolution sum (discrete-time case), or perform graphical 
convolution but may not have a good grasp of what is happening. In other words, students can solve the 
formula but often do not understand the result or why they get that result. Most engineering texts explain 
convolution by giving the convolution integral (and/or convolution sum) and doing some mathematical and 
graphical examples. They often do not attempt to explain how convolution corresponds with what is 
happening between the system and the input to give the output response. In this paper, a more intuitive 
explanation of convolution is given and MATLAB and SIMULINK simulations of physical systems are used 
to give a more intuitive approach to understanding convolution from a systems perspective. 

Introduction 

Students are often introduced to convolution before they see the use for it. In most Electrical Engineering 
curriculums, convolution is introduced in sophomore or junior level signals and systems courses. 
Convolution is often performed numerically and students have a tendency to blindly accept the results their 
calculator or computer provides. Thus it is important for students to understand the use, along with the 
theory of convolution, so they can better evaluate the results they get from convolution. If convolution is 
explained from a systems perspective with good examples, they will see the use, and hopefully understand 
the theory and be able to determine if their results make sense. 

I have found several interactive web lectures/tutorials on convolution [1][2][3]. These web pages give a good 
definition of convolution and a good explanation of how to compute the convolution of two signals or 
functions. This paper proposes explaining convolution from a systems perspective using simulations of 
familiar systems. It is hoped that this will give students insight into what is happening with convolution. 

The system simulation examples are performed using MATLAB and SIMULINK. MATLAB and SIMULINK 
are used extensively in Electrical Engineering programs for signals and systems courses, control systems 
courses, and signal processing courses to name a few. MATLAB and SIMULINK work well for simulating 
most electrical, mechanical, and chemical systems. Basically any system that can be modeled in transfer 
function form, by differential equations, or state variable equations can be simulated using MATLAB and 
SIMULINK. 

The paper is organized as follows: the definition of convolution along with some system theory is provided, 
methods of computing convolution are discussed, a method of explaining convolution using familiar systems 
is proposed, and suggestions are provided for how to incorporate this in the classroom. 
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Convolution Definition and Systems Background 

We begin with the definition of convolution and a brief discussion of some system theory. 

Definition of Convolution 

Convolution is usually defined via the convolution integral for continuous time functions or the convolution 
sum for discrete-time functions. The convolution of two continuous time functions ( )th  and ( )tx  written 

( ) ( )txth ∗  and is given by the convolution integral 

( ) ( ) ( ) ( ) ( ) ( )∫∫
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The convolution integral exists if ( )th  and ( )tx  are absolutely integrable. 

The convolution of two discrete-time functions [ ]nh  and [ ]nx  written [ ] [ ]nxnh ∗ can be found using the 
convolution sum 

[ ] [ ] [ ] [ ] [ ] [ ]∑∑
∞

−∞=

∞

−∞=

−=−=∗
kk

kxknh knxkh nxnh  

Note that convolution is both commutative and distributive. 

Systems Background 

Since in this paper we will look at convolution from a systems perspective, some systems background will be 
helpful. A system is an interconnection of components with terminals or ports where inputs can be applied 
and outputs extracted. Systems can be represented through relationships between the system variables, 
usually between the input and output variables of the system. Figure 1 illustrates a black box approach of a 
system representation. 

 
Figure 1 

A system can be represented by its system function or impulse response ( )th . The output ( )ty  is the 

response of the system to the input ( )tx . Of course usually a mathematical model (approximation) of the 
system is used as opposed to an exact representation of the physical system. 

System analysis and convolution are important for many reasons. For feasibility studies, mathematical 
analysis is often the only available method. Analytic studies are also usually cheaper than experimental 
studies. Certain cases are too dangerous to study experimentally (e.g., nuclear power plants at unsafe fission 
rates or aircraft control under severe turbulence). Convolution allows one to work in the time domain when 
the system function ( )th  and input function ( )tx  are known or known only via experimental data. 
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Convolution will allow us to look at the impulse response of a system and predict how close the output will 
be to the input.  Convolution is also important for many applications. Convolution is commonly used to 
implement linear operations on signals and images such as frequency filtering of signals, smoothing of 
images, and enhancement of images [4][5]. 

In this paper, some knowledge of signal and system theory is assumed. Familiarity with the notions of 
continuous and discrete-time signals and continuous and discrete-time systems and their properties is 
helpful. Information on these topics can be found in most signals and systems texts such as Kamen and 
Heck [6]. 

There are two basic types of system models: input-output models and state or internal models. An input-
output model gives the relationship between the inputs and the outputs of a system. A state model gives the 
relationship between the inputs, internal states, and the outputs of a system. In this paper we will look at 
the convolution model of a system. The convolution model is a time-domain input-output model of a system. 
Other system models include: input-output differential equations (a time domain model) and transfer 
function representations (a frequency domain model). For the discrete time case, difference equations are 
used instead of differential equations. Transfer function representations are often given in terms of Fourier 
transforms, Laplace transforms, or Z transforms. 

In the continuous time case, the convolution integral gives the relationship between the input ( )tx  of a 

linear, time-invariant (LTI) system with impulse response ( )th  and the output response ( )ty . The output 
response is then given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ≥−=−=∗=
t

0

t

0
0 t; dxthdtxhtxthty ττττττ  

This assumes that the input is zero for 0t <  and that the system has no initial energy (zero initial 
conditions). The lower limit of zero is due to ( ) 0tx =  for 0t < , and the upper limit of t  is due to the system 
being causal ( ( ) 0th =  for 0t < , no weight is given to future inputs).  

In the discrete-time case, an LTI system represented by the impulse response [ ]nh  with input [ ]nx  has an 
output response [ ]ny  given by the convolution sum 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]∑∑
∞
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Methods of Evaluating the Convolution Integral and Sum  

Evaluating the convolution integral is possible when mathematical expressions for ( )th  and ( )tx  are 
available. However, in practice the convolution integral is often fairly complicated even for relatively simple 

( )th  and ( )tx . The convolution integral is often evaluated graphically or using transforms. To graphically 
compute the output ( )ty , plot the impulse response of the system ( )τh  and the flipped and shifted input 

( )τ−tx . To find ( )τ−tx , first flip the input about the y-axis to form ( )τ−x  and then shift ( )τ−x  by t to the left. 
Multiply the two signals ( )th  and ( )τ−tx  and find the area of the resulting function. This gives the output 

( )ty  for a particular value of t. This can be repeated for all values of t of interest. [3] 
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The convolution sum (discrete-time case) is fairly easy to evaluate in practice. Consider the direct form of 
the convolution sum 

[ ] [ ] [ ]∑
∞

−∞=

−=
k

kn xkhny  

Assuming the impulse response [ ]nh  and the input sequence [ ]nx  are available, flip and shift the input 
sequence to form [ ]knx −  and make a substitution of variables to form [ ]kh . Then for each value n of 
interest, evaluate the convolution sum over the index k. For systems with finite length impulse responses 
and input sequences of finite length, both the lower and upper limits of the summation will be finite values 
that can be determined. Students often forget that the convolution sum must be evaluated in its entirety to 
obtain one value of [ ]ny  and thus to obtain the output sequence, the convolution sum must be evaluated for 
all n of interest. 

The flip and slide method of discrete-time convolution is similar to graphical convolution. To convolve a 
system’s impulse response [ ]nh  with an input sequence [ ]nx , the input sequence will be flipped, shifted to 

the left by n units, and slid through the stationary impulse response. In other words, first obtain [ ]k-x  by 

flipping the input sequence about the y-axis. Form [ ]k-nx  by shifting the [ ]k-x  sequence by n samples to 

the left. Finally, hold [ ]kh  stationary and slide [ ]k-nx  through. Start with an n large enough so that [ ]kh  

and [ ]k-nx  do not overlap, calculate [ ]ny  by taking the dot product of [ ]kh  and [ ]k-nx  for that 

particular n. Continue by incrementing n by one, calculating [ ]ny  and repeating until all nonzero [ ]ny  have 
been calculated. There will be a finite number of nonzero terms for sequences that have finite length. 

Convolution is often performed using the property that convolution in the time-domain corresponds with 
multiplication in the frequency domain. Thus using the Fourier (or Laplace) Transform in the continuous 
time case, the convolution of ( ) ( ) ( )txthty ∗=  can be found by 

( ) ( ) ( )ωωω XHY = , where ( ){ } ( )ωHth =ℑ , ( ){ } ( )ωXtx =ℑ , ( ){ } ( )ωYty =ℑ  and ( ) ( ){ }ωY1ty −ℑ=  

Using the Z transform in the discrete-time case, the convolution [ ] [ ] [ ]nxnhny ∗=  can be found by 

( ) ( ) ( )zXzHzY = , where ( ){ } ( )zHth =Ζ , ( ){ } ( )zXtx =Ζ , ( ){ } ( )zYty =Ζ  and ( ) ( ){ }zY1ty −Ζ=  

Explaining Convolution Using a RC Circuit Example 

Two of the more intuitive explanations of convolution I have found are in the introductory circuits textbook 
by Nilsson [7] and from an email conversation between Dr. Richard Hathaway of the Georgia Southern 
Department of Mathematics and Computer Science and other members of the same department [8] (the 
most intuitive response of the conversation came from Dr. Donald W. Fausett, Professor and Chair of the 
Department of Mathematics and Computer Science). 

The convolution integral can be looked at as ( )th  being a weighting function and the convolution integral as 
being a weighted average of the input ( )tx  over the interval of integration. We can think of the convolution 
at each point t as a compromise of the different memories of the input x in the past (or at different locations, 
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depending on whether the variable is time or space). The values of h(tau) tell how well we remember the 
input x(t-tau) [8]. 

Looking at graphical convolution, when the input is folded, the vertical axis represents present time. Past 
values of the input are to the right of the vertical axis and future values of the input are to the left of the 
vertical axis. The impulse response of the system weights the inputs according to present and past values, 
giving more weight to some values than others. [7, p. 700]  

So by multiplying the flipped shifted input by the impulse response, the impulse response serves as a 
weighting function and gives insight into system’s memory. The more time, over which the impulse response 
is nonzero, the more memory the system has. The impulse response provides a certain weight depending 
upon when the value of the input occurs/occurred past or present. If the system has no memory, past values 
of the input are given no weight. The more memory a system has, the more distortion or difference between 
the system response and the input signal. 

Although convolution is often computationally easier to do in the frequency domain, I believe that it is easier 
to see what is happening in the time domain. Let us look at using these interpretations of convolution to 
explain what is happening in a RC circuit (Figure 2). In other words, look at the system response of a RC 
circuit and relate convolution to what students would have learned in a circuits course. 

R  =  1 0 k  Ω

Vi(t ) Vo(t )
C  =  0 .25 µF

+

-

-

+

 

Figure 2, RC circuit of convolution example 

The transfer function of the system (you may need to derive this using circuit analysis depending upon the 
level of the students) is 

( ) ( )
( ) RC

1

RC
1

i

o

ssV
sV

sH
+

==  

The time constant of the circuit is sec102.5  RC -3×=  and the impulse response of the system is 

( ) t400t
RC
1 e400eth RC

1
−− == . The input to the system is a pulse waveform with an amplitude of 4 Volts, a 

period of 0.02 seconds, and a duty cycle of 50%. A plot of the input signal is shown in Figure 3. When the 
input signal ( )tx  is folded or flipped, the vertical axis represents the present time and future input values 

are the values to the left of the vertical axis. The flipped signal ( )tx −  is shown in Figure 4. 

The impulse response ( )th  weights the input according to present and past values, giving more weight to 

some values than others. When convolving ( )th  and ( )tx , multiplying ( )τh  by ( )τ−tx  applies certain 
weights depending on when the input value occurs (past versus present). Looking at the impulse response 

( )th  of the RC circuit (Figure 5) the present input value is weighted much more strongly than past input 



2001 ASEE Southeast Section Conference 

6 

values as seen by the high amplitude of ( )th  near t=0 (present input) and smaller amplitudes of ( )th  for 
larger t. 

If the system had no memory, then past input values would be given no weight and the output response 
would be a replica of the input. 

 

Figure 3, input ( )tx  

For the RC circuit, the impulse response decays rapidly to zero. Recall the time constant of the system was 
sec102.5  RC -3×= . Thus compared to mechanical and chemical systems, which usually have much longer 

time constants, this system does not have much memory. This will show up in the output response by the 
output rapidly decaying to zero when the input voltage is taken away. A system with more memory would 
have a longer nonzero output after the input was taken away. 

After investigating the input and impulse response, discuss the system from a perspective they would have 
encountered earlier in their coursework. For the RC circuit example, this could mean explaining the system 
response from the capacitor charging and discharging. 

Initially assume the voltage across the capacitor is zero. When the pulse is applied to the RC circuit, the 
capacitor will start charging up. This corresponds with the flipped input starting to overlap the impulse 
response and as more of the input pulse overlaps the impulse response, the output voltage will go up. When 
the nonzero portion of the input pulse is fully overlapping the impulse response, the output voltage should 
be at is maximum. As the input pulse is taken away (less of the nonzero part of the pulse overlaps with the 
impulse response), the capacitor should start discharging and the output voltage will go down. Once the 
input pulse is no longer overlapping the impulse response, the output voltage will be zero. 
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Figure 4, flipped input ( )tx −  

 

Figure 5, impulse response ( )th  

 

The explanation/comparison of the system response from convolution and from a method they learned 
previously hopefully will make sense to the students. They then should have a good idea of what the output 
response should look like and why. One could further flesh out the expected output response by discussing 
the time constant of the system and how this will show up in the response. 
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Looking at a plot of the output response (figure 5), one can see that it agrees with what we expect from our 
knowledge of RC circuits and the convolution (this can be explained in more detail). Comments about system 
stability (relating to finite area under the curves), causality (when output starts), and other properties could 
be made if desired.  

 

Figure 6, output response ( )ty  

The plots, Figures 3 – 6, were generated using MATLAB and SIMULINK. A SIMULINK block diagram 
(Figure 7) simulation was used to generate the data values. The data values were then plotted using 
MATLAB. MATLAB and SIMULINK make it very easy to change the input to the system and quickly see 
what effect this has on the output. This allows the exploration of convolution and examples illustrating it 
with minimal effort. It also allows instructors to quickly illustrate “what ifs” by changing system parameters 
and the input signal on the fly. 

 

Figure 7, SIMULINK block diagram 



2001 ASEE Southeast Section Conference 

9 

Suggestions  

When explaining convolution to students, give the definition of convolution, and then quickly move to 
intuitive examples. Discuss the input, impulse response, and the system’s characteristics. Explain how these 
will contribute to the output response. Ask students to roughly sketch the output response and explain what 
is going on. Finally show and comment on the output response and answer any questions.  

The examples used in class will be dependant on the course that convolution is introduced or discussed in. In 
Electrical Engineering curriculums, convolution is often explained in sophomore level signals and systems 
classes. Students will usually have taken a circuits course beforehand. Other possible examples that could 
be used in Electrical Engineering courses are frequency select filters (make sure to relate the example to 
something they are familiar with like an audio system), mechanical engineering courses could use 
automobile, ship, or airplane systems, and chemical engineering courses could use temperature control 
systems, fluid level systems, or models of chemical reactions. 

In my experience, students have a difficult time understanding convolution. This paper proposes that 
convolution is best explained from a systems perspective using examples that students should be familiar 
with. In this paper, convolution was explained using a RC circuit example. This also allowed the exploration 
of system topics such as memory, causality, and stability. MATLAB and SIMULINK make it very easy to 
simulate systems and quickly see the answer to “what if” questions. There is always a danger that when 
explaining concepts using technology that students will pay more attention to the technology, in this case 
MATLAB, than to the subject matter.  
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