Using Maple for Classroom and Laboratory
Instruction in Process Control

P. A. Ralston, M. J. Maron
University of Louisville

Abstract

The ability to simulate control systems is
necessary for many undergraduate and graduate
engineering courses and laboratories. In particular,
process control instruction is enhanced by tools that
provide convenient graphical support and allow reliable
numerical computation. Computer Algebra Systems
(CAS) provide such support, and rapid accurate symbolic
computation as well. This paper describes two ways that
the capabilities of the CAS Maple have been used to
enhance instruction in process-control lectures and
laboratories. The first is the use of built-in Maple
commands, the second is the use of a package of
procedures written for particular applications. These
procedures serve as "higher level" Maple commands that
make useful information accessible to students and
faculty who have limited Maple expertise. The package
is currently being used with considerable student and
teacher satisfaction, and improvements are planned.

Background

Recent articles have described how computer
tools like Mathematica, Maple, Mathcad, and Matlab
were used to apply the principles of process control
[Ogunye (1995,1996a,b); Munro and Tsapekis (1994);
Ohtani, Fukuzawa, and Masubuchi (1994); Ralston and
Maron (1997)], and a recent ASEE Frontiers in
Education Conference [1996] dedicated an entire session
to the use of Matlab in teaching process control. All of
these software tools provide effective two and three
dimensional graphs and a powerful programming
environment, and each has particular strengths relative to
the others.

Due to a variety of factors, including cost,
performance, and familiarity, the University of Louisville
purchased a global site license for MapleV, Release 4.
This paper describes how Maple procedures were used to
augment Maple's "built-in" capabilities in teaching
process control.

Two Ways to Use Maple in Instruction

Computer Algebra Systems (CAS) like Maple or
Mathematica have commands for symbolic, numeric, and
graphical operations. These commands, generally
entered interactively, are actually calls to built-in
procedures that have the commands as their names. CAS
commands are special in that they can accept and return
symbolic or graphical objects as well as numerical ones.
For example, the Maple command

plot([x*2,sin(x)], x=-Pi..Pi,
color=[red,blue]);

has three calling parameters: one list of two algebraic
expressions, x* and sin(x), and two equations, one to
provide details about the horizontal plot range and one to
provide details about the color. The command returns
(and displays) a plot structure that can be stored for later
re-use if desired. Terminating the command with a colon
rather than a semicolon suppresses the display.

Built-in CAS commands enable rapid, flexible,
neatly-displayed symbolic and graphical output that can
be used to enhance instruction. In particular, they can be
used to demonstrate the effects of varying system
parameters and for a rapid review of prerequisite material
(e.g. DE and Laplace transforms for a course such as
process control).

In addition to built-in commands, modern CASs
have extensive programming power. CAS users with
advanced skills can write procedures that become
"higher-level" discipline-specific commands that can be
used just like built-in CAS commands. In this way,
advanced CAS capabilities can be made available to
novice students and instructors. In Maple, collections of
related user-created procedures can be put into a package
and loaded for use like any built-in Maple package. This
paper describes a package that was developed for process
control courses at the University of Louisville.

144

Motivation for a Process-Control Package

Chemical engineering faculty at UofL seek to
use effective, reasonably-priced software tools in teaching
lecture and laboratory courses in process control. After
investigating several options, the decision was made to
create a single, inexpensive CAS-based software package
to facilitate understanding and application of process
control concepts, and through its use, demonstrate this
understanding. The chosen CAS was Maple, for which
UofL has a multi-platform site license. Institutions with
a similar license for Mathematica, Matlab, or Mathcad
(some of which have a separate toolkit for control theory)
can get comparable results with those tools.

Needed for chemical engineering process control
assignments is the ability to simulate, at a minimum,
open and closed loop continuous and sampled systems for
processes that exhibit deadtime. In addition, basic
systems concepts such as solving differential or
difference equations using Laplace or z-transforms must
be reviewed or demonstrated effectively. The process
control laboratory course has a large simulation
component, to reinforce single loop enhancements such
as feedforward control, deadtime compensation, and
multivariable control. In the past, students in these
courses typically used a variety of computer tools,
including Maple, spreadsheets, and some special-purpose
control software. Students often spent considerable time
learning to use the latter tools in order to complete the
activities that required them.

In Fall 1996, students in the graduate process
control course were asked to use Matlab with SIMULINK
and the Control System Toolbox for some projects and
Maple procedures as described above for others, and then
to compare them. In most respects, students found the
Matlab suite and Maple procedures equally easy to use.
The only significant drawback of the Maple procedures
was the lack of a graphical interface like the one
SIMULINK provides. The ability to change a simulation
by manipulating a block diagram instead of a procedure
call was very appealing. This student response provided
motivation to continue writing Maple procedures and
plan to add a graphical interface. The final motivation
came when the 1997 license renewal cost for one of the
special-purpose simulation tools increased dramatically.

Process-Control Package Description

The Maple procedures in the process-control
package currently fall into three categories:

1. Single-Loop Control Simulation

e PID() Proportional Integral Derivative (PID)
control of a continuous or sampled system.

e FF() Feedforward and/or feedback PID control of a
sampled system.

e PIDDTC() Deadtime Compensation using
preliminary or final Smith predictor

e IMC() Internal Model Control for a sampled
system

e SMPC() Simplified Model Predictive Control for a
sampled system.

2. Multiple Input/Qutput PID Control Simulation
PI2() 2x2 sampled systems under PID control.

3. Analysis Tools

e checkdata() displays data entered as lists.

o linfit() fits a straight line to given data and displays
the result graphically.

e detind() calculates the determination index r* of a
least squares fit.

e bodel() Bode plot of individual factors of G(s)
along with overall AR and ¢.

e bode2() Bode plot of several G(s)s and/or (®, AR)
data sets on a single graph.

Three Illustrative Examples

We now give one lengthy example to illustrate
the instructional use of built-in Maple commands and

. two short examples that illustrate procedures bodel()

and bode2() in the process-control package

EXAMPLE 1 Inverse Response and Overshoot

One of the more difficult concepts to describe in class is
how a system with two first-order processes in a parallel
structure (Figure 1) can exhibit inverse response and
overshoot.

7,5+1

Figure 1 Two first order processes in parallel

145

The following Maple steps can be executed in class to
provide a convincing demonstration of conditions under
which inverse response and overshoot occur. Write the
overall process transfer function Gp as the sum of two
first order processes G and G2:

> Gl:=K1/ (taul*s+l) : G2:=K2/ (tau2*s+l):
> Gp := collect (normal (G1+G2) ,s) :
> 'Gl'=Gl,’ G2 '=G2; 'Gp'=Gp;

1o KL Gy K2

7l s+1 T72s+1
Gy K1T24K2eD)s+K1+K2
P (ls+1) (z25+1)

Note that although neither GI nor G2 has a zero, Gp =0
when numerator(Gp) = 0, i.e., when s = —1/73, where

_Klt2+K27l *
KI+K2

Set K2 = 1 — KI (to normalize the gain of Gp to 1), then
solve (*) for K and store the resulting formula as K1sol:

> tau3d=-1/solve(numer (Gp)=0, s): # (*)
> Klsol := solve(subs(K2=1-K1,"), Kl);
Klsol = Zr3+el
-12+1l

The step response is the inverse Laplace
transform of Gp/s. To get it, use the invlaplace()
command, which is in Maple's inttrans package:

> inttrans[invlaplace] (Gp/s,s,t):
> ystep := collect(“ , exp);

t t

—) —
ystep =—Kle 1" +(Kl-1)e ’2)+1

Question: How does ystep vary with 3 (or K1) for

fixed values of 77 (say 2) and 72 (say 1)?
> taul := 2: tau2 := 1: # easily changed

These assigned values of 7au] and tau2 are automatically
substituted in ystep and Klsol. We show this for ystep:

> 'ystep'=ystep;

ystep =K1 +(K1-1) e +1

The next two commands create a list of 3 values and
then display a list of the corresponding K/values.

> tau3list := [4,3,2,3/2,1,0,-1,-2,-3]:
> Kllist=map (unapply (Klsol, tau3) ,");

tau3list .= [4, 3,2, %, L0, -L-2,- 3]

Kllist = [— 2,-1, 0,%, 1,234, SjI

The following for loop stores a sequence of ysteps as
yseq and a sequence of titled plots of ystep as plseq.

> yseq := NULL: plseq := NULL:
> for t3 in tau3list do
> cat(“taul = *,2,°, tau2 = °,1,

* ,tau3=",convert(t3,string),

Kl = ' ,convert("",string)):

> subs (Kl=subs (tau3=t3,Klsol) ,ystep) :
> plseq:=plseq,plot(",t=0..10,title=""):
> yseq := yseq,"":
> od:

One way to display how ystep varies with 73 (or
K1) is to plot ystep for the selected values.
> plot([yseql, t=0..10,

color={black,blue,green, tan,red,
brown,magenta,cyan,pink]);

4 7

8 A 4 4 b 8 10
™ o

:4 e’

A second way is to "animate” the graph of ystep. The
frame for 3 = 4 is shown. The others are displayed by
using the mouse to step through the remaining frames or
to run the animation.

bbb oooo

> display([plseq], insequence=true);

taul =2 tau2 =1 taud =4, K1=-2

146

A final way is to plot ystep as a function of (¢, KI). The
horizontal plane y = 0 is also plotted to see clearly when
ystep changes sign (inverse response).

> plot3d({ystep,0}, t=0..10, K1=-4..7);

RS S SSoYSe S5

53

PSS
ROTTSCSPL S
.

AC 25

O] [LF
ol

All three displays indicate overshoot for X7 <0 and
inverse response for X/ > 2. One can then examine the
general expression for ystep (just before Question: above)
to see why this makes sense when 7, < 7.

EXAMPLE 2 Bode plots showing factors of G(s)

The amplitude ratio AR of a transfer function G(s) is the
magnitude of G(i ®), that is, | G(/ ®) |, and its phase lag
¢ is the argument of G(i ®). A Bode plot of G(s) is a plot
of logio(4R) and/or ¢ versus log;o(w). Procedure
bodel() can display Bode plots of individual factors of
G(s) along with the overall AR and . The syntax for
calling bodel() is:

bodel(Gs, omegarng, hdrstr, dtails)

where Gs is the transfer function, assumed to be a
function of s, omegarng is a . . b, the ® range to plot;
and hdrstr is ‘fraction’, "as is’, or a positive integer
giving the number of significant digits to display.

When bodel() is called with dtails = true,
Maple's algebraic capabilities are used to factor G(s) into

the gain X, a delay ¢("?% (if any), and normalized
numerator and denominator factors of the form

s+l or ris*+2t¢s+ 1,

and Bode plots for each factor are shown along with that
for G(s) itself. We illustrate this for a G(s) that has one
real pole, one real zero, and a delay.

> G:=(10*s+5) / (s+2) *exp (-2*s) :
> bodel(G, .03..10, ‘fraction’, true):

(10 s + 5) %9

Bode Plots for G(s) =
s+2

’

G(s) = K Gi(s) Ga(s) Gs(s), where

K= % Gi(s)=€7, Gy(s) =25 +1, Gy(s) = §
55"’1

AR: G=black, K=gold, G1=red, G2=blue, G3=green

H
//

10.

100 omega1‘ 10.

Phase: G=black, G1=red, G2=blue, G3=green

100
50
< i —
-100 X
\“l
-150 R
X
-200 A
¥
-0 £33
.100 omega ! 10.

Plots such as these help the user gain an experiential
sense of how individual factors of G(s) contribute to
overall amplitude and phase behavior.

EXAMPLE 3 Bode plots for a variety of G(s)'s

Procedure bode2() plots any combination of up to three
G(s) formulas and up to three lists of numeric (o, AR)
data. All analytic functions and data sets are putina
single list GL and plotted together on amplitude ratio
and phase lag plots. The syntax for calling bode2() is

bode2 (GL, omegarng, plotttl)

where GL,; is either a transfer function G(s) or a data list
of the form [omegalist, ARList]; omegarng is the ®
range a. . b; and plotttl, the desired plot title, is a
character string in backquotes (" *).

Procedure bode2() was written to expedite
process control laboratory experiments. The following
call to bode2() is from the documentation for an
experiment to study second-order underdamped behavior,
with amplitude data obtained empirically over a range of
frequencies. The list GL contains two analytic G(s)'s,
G3theo and G3semi, and one list [omeg3L, AR3L] of
empirically obtained (o, AR) data.

147

> tau :='tau': zeta:='zeta':

> Gs:=1/((tau*s) *2+2*zeta*tau*s+1):

> G3theo:=subs (tau=.21,zeta=.05, Gs):

> G3semi :=subs (tau=.21,zeta=.16, Gs):

> GL:=[G3theo, G3semi, [omeg3L,AR3L]]:
> bode2(GL, .01..100, ‘Manometer 3");

BODE PLOTS for CONTINUOUS G(s)'s
and/or DISCRETE ARk LISTS

1
G(s)’s, (black, = ,
@, (—) 04415% + 0210 s +1

(red,) = ——s—
0441s°+.0672s+1

Ark’s, Ark, = black box

Manometer 3 Amplitude plot

-100e-1 .100 onega 0. 0a.

Manometer 3 Phase plot
0 e —

1]
Sue.

-100
-120
-14
-160

-180 ;- SShLs

100 kg G 100.

-

On the output, the subscripts on the G(s)s and ARk's refer
to the order in which they occur in the GL list (so G/ is
G3theo and G2 is G3semi). The discrete data were
simulated using slight perturbations of theoretical G(s)
values. Actual empirical data are unlikely to be nearly as
accurate!

Summary and Work in Progress

This paper described a Maple package used for
undergraduate and graduate process control instruction at
the University of Louisville. Three examples were
presented. One showed how "built-in" CAS commands
can effectively demonstrate the effects of parameter
variation in a second order overdamped system with
parallel structure. The other two showed how procedures
that generate enhanced Bode plots can effectively display
important features of analytic and/or or empirically-
obtained transfer functions. The symbolic capability of
the package goes beyond most existing process control
software. It is currently being used with considerable
student and teacher satisfaction.

Work in progress includes providing a graphical
interface to formulate simulations, extending the
multiple-input multiple-output capabilities to n by n
systems, including model predictive strategies, and
incorporating the ability to model the effects of noise to
enable the simulation of stochastic systems.

References

1. Marlin, T. E., Process Control — Designing Processes
and Control Systems for Dynamic Performance,

McGraw Hill, New York, 1995.

2. Munro, N. and Tsapekis P., Some Recent Results
Using Symbolic Algebra, Proceedings of the IEEE/IFAC
Joint Symposium on Computer-Aided Control System
Design, Tucson, Arizona, March, 1994, pp.109-116.

3. Ogunye, A. B., Process Control and Symbolic
Computation: An Overview with Maple V, Maple
Technical Journal, vol. 3, no. 1, 1996a, pp. 94-103.

4, Ogunye, A. B., Advanced State Space Analysis Using
Computer Algebra, Proceedings of the American Control
Conference, Seattle, Washington, vol. 1, June 1995, pp.
559-563.

5. Ogunye, A. B. and Penlidis A., State Space
Computations Using Maple V, IEEE Control Systems,
16(1), 1996b.

6. Ohtani, T., Fukuzawa, M., and Masubuchi, M., 4
CAD System for Nonlinear Control System Design Using
Mathematica, Proceedings of the IEEE/IFAC Joint
Symposium on Computer-Aided Control System Design,
Tucson, Arizona, March, 1994, pp.197-204.

148

7. Ralston, P. and Maron, M., Computer Algebra System 8. Session on MATLAB uses in Control, ASEE/IEEE
Applications in Process Control, Proceedings of the 12th Frontiers in Education Conference, Salt Lake City, Utah,
IEEE International Symposium on Intelligent Control, November, 1996.

Istanbul, Turkey, July 1997, pp. 221-225.

PATRICIA A. RALSTON

Pat Ralston holds a joint appointment in the Chemical Engineering
department, where she teaches process control courses, and the Engineering
Mathematics and Computer Science department, which is responsible for
teaching the required and elective mathematics courses for all engineering
programs at the University of Louisville. Her current research interests are in
process modeling, design, and control, particularly in the application of fuzzy
“ set theory to controller design.

MELVIN J. MARON

Mel Maron teaches in the Engineering Mathematics and Computer Science
department. His background is in electrical engineering and mathematics. He
worked at Bell Telephone Laboratories, the Polytechnic Institute of Brooklyn,
and the University of Glasgow before coming to the University of Louisville in
1971. His current research interests are numerical analysis and computer-
assisted instruction, with particular emphasis on symbolic computation.

149

