Experience Report On The Personal Software Process In CS2

Rammohan K. Ragade, James E. Lewis
University of Louisville

Abstract

The Personal Software Process, devised
by Watts Humphrey [1], is credited with
increase in industrial software quality. This
paper reports the results of using it on a trial
basis in undergraduate education for computer
engineers and computer scientists. The course
chosen is the CS2 course of the ACM Computer
Science curriculum on Data Structures. Students
generally report improvements in their
programming and software development
activities during the course of four programming
projects. The goal is to have a new generation of
ergonomically sensitive computer and software
engineers for the new millennium.

Introduction

What is PSP

The Personal Software Process (PSP) is
a self-improvement process designed to help
manage, control, and improve the way a person
works [1,2]. The purpose of using the PSP is to
improve software engineering. The PSP gives
software engineers a framework for
understanding their mistakes and of the
importance of human factors in software
development and engineering. Software errors
or bugs occur increasingly in large software
projects. The productivity and quality of the
resulting software product has implications in
the larger economical context. The PSP gives
software engineers a framework for
understanding their mistakes. The PSP strategy
follows the approach described by Watts

Humphrey:

1. Identify those large-system software
methods and practices that can be used by
individuals;

240

2. Define the subset of these methods and
practices that can be applied while
developing small programs;

3. Structure these methods and practices so
they can be gradually introduced.

The PSP is made up of methods that
include data gathering, size and resource
estimating, defect management, cost of quality,
and productivity analysis. The data is gathered
through every phase and then analyzed once the
project is completed to show error statistics that
will improve the development of the next
project. The data gathered will show time and
estimation errors, cost performance indices,
defects injected and removed per hour, process
yield, appraisal and failure cost of quality, and
the appraisal to failure ratio.

Several papers, workshops and
conferences have shown the benefit of the PSP
in industrial settings. Motorola is one of the
early companies to have experimented with the
PSP and found value [2]. At Embry Riddle
University PSP is taught early in their Masters
of Software Engineering program. They have
also taught PSP in CS1 and CS2. [3]. The
Software Productivity Centre (located at
http://www.spc.ca/training/psp/index.htm as of
October 2, 1997) teaches courses in the PSP.
The Software Productivity Centre has had a 72%
reduction in defects found in the testing phase, a
21% improvement in productivity, and the
trained engineers can relate productivity to
quality.

Need for early introduction in
undergraduate education

The authors have used the PSP in the
context of a large software project done by a
team of 3 to 5 students over a semester. The
project is a major requirement of a

senior/graduate level course on software
engineering. It was observed in these projects,
that many students were uncomfortable with the
PSP concept. The usual argument is that they
were not aware of its use in industry. Most of the
students in the course have had three co-
operative work assignments (coops) or are
currently employed full time with an outside
company.

It occurred to us that the beginning
students should be introduced to PSP concepts.
However, the 1 credit hour programming course
did not offer the time frame necessary to
inculcate PSP practices. We realized the need to
explore the concept in an intermediate level.
The first author teaches the CS2 course on data
structures and felt that it could be tried in that
course. At the time we were not aware of the
Hilburn and Towhidnejad effort. We targeted
the CS2 Data Structures class in Fall 1996.

The PSP should be introduced into an
undergraduate’s education before the
undergraduate can develop bad habits. Bad
programming habits are usually formed during
the learning process. If these bad habits are
reinforced then the bad habits become harder for
the programmer to break. If undergraduates are
taught early in their programming courses to use
the PSP then they will form the habit of using
the PSP. Then when the students are software
engineers, they are more likely to continue using
the PSP. Once a person has formed a habit, the
habit is hard to break.

When introducing a new software
process there can be many obstacles. One
obstacle is to convince the professors, of the
software development courses, that the process
is beneficial to experienced programmers as well
as novice programmers. Both authors have
taught beginning programming classes. Once
the professors are convinced, then the
programmers need to implement the new
processes. Programmers are resourceful when
they try to avoid a new software process, some
excuses heard are:

e “We are two busy and don’t have time for
processes”;

241

e “Maybe when a new program is started but
this one has been around for years”;

e “Processes are busywork that no one ever
reads”;

e “Software development is not an assembly
line, it is a creative process” [4].

Many software engineers will argue
that PSP approach is impractical. There is
evidence that the PSP works. By using a
defined and measured personal software process,
software engineers can improve their
productivity and the quality of their products
[5]. Other human factors to deal with is the
notion of “Do I have to do it?” or “Can I cheat
on some aspects of the process or can I just fake
the data?”. These factors are prevalent in some
students. The students must be taught that the
PSP is not just something to learn for a class but
something to continue in all of their
programming endeavors. When students see
software processes being used by the software
engineering community, it reinforces their
learning.

Computer Science and Engineering
students should see early another dimension to
programming and software development
activity. Victor Basili [6] and his colleagues for
many years have advocated the experiential and
experimental aspects of software engineering.
Experiential correlation of how often
programmers make errors, the types of these
errors and when they begin to avoid these are
important concepts. They can recognize re-
usable styles of programming. Programmers
should recognize factors besides the program
and programming speed. They must consider
the time, effort and resources it takes in the
development. Errors and error rates have an
impact on the applications reliability,
maintainability, and dependability. A good
programming practice requires documentation.
Building large applications termed industrial
strength applications take time and effort. Often,
some of the programmers have to learn new
languages, skills and concepts on the job.

A Pilot Study

The CS2 course of the ACM CS
curriculum is ideal as it is well structured and

well recognized by the computer science
academic community. Moreover Thomas
Standish’s book on Data Structures {7], has an
emphasis on software principles. This book was
chosen as the text book for the class so as to
emphasize software principles early in the CS
curriculum. The role of ergonomics as an
engineering subject is increasingly appreciated.
CS2 affords the possibility of making students
appreciate ergonomic principles. Ultimately
engineered products affect human lives. A tenet
of professional ethics requires engineers to use
their scientific knowledge and training to ensure
the highest quality of work in products and
systems. Certainly, PSP contributes to this goal
by making a student aware of error patterns in
software development.

Many students in the CS2 class
concurrently learn C, a practice that is not
officially sanctioned. Maybe they avoided the
more difficult aspects of C such as memory
management and pointers. In the CS2 class
these are the concepts they are expected to
demonstrate. So now the student has two tasks —
one to learn C well and the other to learn the
theoretical aspects of Data Structures. To these
tasks we added a third task — to keep a personal
diary to note the time and effort for doing each
class programming assignment. To offset the
unwillingness to participate in this effort, we
decided to reserve 7% of total points for a report
on how they improved their performance based
on statistics from the note-book.

Yet, we do not discount the possibility
that for some students, an academic assignment
is a hurdle that they wish to quickly finish and
g0 to more lucrative tasks. Some may resort to
cheating — they may have falsified data. Also,
their record keeping may not be consistent.
While the purpose of the exercise was more of a
demonstration, we did not want the process to
have a major effect on the students’ final grade.

Four projects were given. Programming
Project 1 concentrated on all students
understanding the roles of pointers and memory
management. They also had projects on linked
lists, stacks and queues. Project 2 was devoted to
the tree data structure. Project 3 had examples
from applications of graph theory. Project 4
gave them a good sample of real problems
which used hashing and sorting.

2472

Students were asked to keep a log book,
which was inspected at select random times
during the semester. They could earn full grade
points for a careful log and a final summary
report. We motivated the students by appealing
to their desire to learn and improve. Not all
students cared about log entries. Many had after
the fact entries. These were just to show the
instructor a report and earn their grade points.
But there were those who took upon themselves
the challenge to incorporate the methodology
into their projects and learn. The comments
offered by these students is encouraging to
continue the effort.

From the log book the students were
asked to generate comparative charts showing
the time and effort they spent on design, coding,
debugging and testing tasks. They could show
the results as simple pie charts or histograms.
They were also encouraged to submit qualitative
statements indicating the types of programming
and data structures specific learning that took
place. Some of these comments are summarized
in the Appendix.

Results and Recommendations

It is encouraging to see freshmen,
sophomores and juniors making the correlation
between their practices and the quality of the
code they develop. They are eager to learn. As
Martin Griss [8] observes recognizing design
and code patterns encourages the concept of
reuse — an essential concept for the new
millennium. There are bound to be individuals
who are not ready for the new millennium, and
wish to do programming the old fashioned way
of rushing to code. However, as educators it is
our task to awaken their interests. It is also a
wonderful way of getting freshmen, sophomores
and juniors to see the correlation between ethics,
professionalism and programming.

We should give more attention to
training ergonomically sensitive computer
engineers. When we start early in their
undergraduate education, we can mold their
appreciation of human factors in software
quality and productivity. We believe there is
room for incorporating PSP sensitivity in the
first or second programming classes. Certainly,
we believe there is a place for PSP in CS1 or

CS2 courses. With this training, students will
not need to relearn PSP in upper level software
intensive classes.

References

1. Humphrey, Watts S., A Discipline for
Software Engineering Addison-Wesley
Publishing Company, Reading MA, 1995.

2. Humphrey, Watts S., Introduction to the
Personal Software Process, SEI Series in
Software Engineering, Addison Wesley,
Reading MA 1997.

3. Hilburn, Thomas B. and Towhidnejad,
Massood, “Doing Quality Work: The Role
of Software Process Definition in the
Computer Science Curriculum”. SIGCSE
Bulletin. Vol. 29, No. 1, March 1997 pp.
277-281.

4. Fayad, Mohamed E., “Software
Development Process: A Necessary Evil”.
Communications of the ACM Vol. 40 No.
9 (September 1997), 101-103.

5. Humphrey, Watts S. “Using A Defined and
Measured Personal Software Process”.
IEEE Software. Vol. 13., No. 3, May 1996
pp. 77-88.

6. Basili, Victor R. “The Experience Factory
and its Relationship to Other Quality
Approaches”. Advances in Computers,
Vol. 41, New York NY, Academic Press
1995, pp. 65-82.

7. Standish, Thomas A., Data Structures

Algorithms & Software Principles in C,
Addison Wesley Publishing Company,

Reading MA 1995.

8. Griss, Martin L., “Reuse: The coming
millennium offers software reuse to come
into its own”, Object Magazine, Sept 1997
pp. 33.

243

APPENDIX

Sample Observations

Documenting the code thoroughly and
verifying certain segments, a lot of code was
available for reuse. Generic segments of
code could be used from assignment to
assignment, such as for user -menus.

Using error-detecting code structures enable
early correction of faulty practices.

Time spent on design was increased from
the first two assignments, as good design
rewarded with less amount of time in

debugging.

Documenting programming practices and
relating these to debugging, also
encouraged spending more time on design.

The urge to jump to coding was toned
down forcefully as the recognition of better
designs before coding brought about better
coding practices in the last two
assignments.

Through the projects the programmer
learned the value of modules that compile
and are error free, which have few functions
rather than one huge module with all the
functions.

Pointer manipulations were better learned
through careful design than through a trial
and error approach in programming.

Sample notes from the diary of one student

problem 3: Time used 7:00 PM — 11:00 PM, Oct. 1
7:00 PM - 11:00 PM, Oct. 23
7:00 PM — 11:00 PM, Oct. 24

1. Bad argument 2 type for ListInsert(): NODE_TYPE* (NOTE_TYPE** expected)
— 1 declared 2nd argument as “**” in ListInsert(), but called the function using 2nd

Mg

2. Printed out wrong result
— I forgot to initialize Node List before using it.

3. Undefined function isdigit called
-- Forgot including <ctype.h>

4. Infinite Loop
—~Wrong while loop condition (the condition is always satisfied).
problem 4: Time used 7:00 PM — 10:00 PM, Oct. 2

1. Segmentation fault, Bus error
— TreeNode T was used before memory allocation for it.

argument as

-- Afterwards add *T = (TreeNode *)malloc(sizeof(TreeNode)) before using it, then the problem is

gone.

2. Error assignment to array
-- T used “(*T)->Airport = A” instead of “strcpy((*T)->Airport,A).

3. Function return different type

— In BinaryTreeSearch function, if reach successful it returns a TreeNode, but if it is unsuccessful it
returns 0. Afterwards, I changed that, if reach is not successful, then it returns NULL. The program worked.

244

Sample Effort comparison by one student.

SESSNET
ReLSS T
SRS

R

RS

s
&
%
%
s
g

245

RAMMOHAN K. RAGADE

Rammohan K. Ragade (Ph.D. ‘68 Indian Institute of]
Technology, Kanpur, India), is Professor of]
Computer Science and Engineering, at the University
of Louisville. He has written over 100 papers, including
journal articles, refereed conference papers, chapter
contributions to books. He is a co-author of a paper
titled "Using simulation to aid in the design of an
intelligent tutoring system”, Journal of Simulation
Digest Spring 1995 (with Pauline Cushman), for
computer-aided teaching of PASCAL. His current
research and teaching interests span various aspects of]
Software Engineering, Genetic Algorithms for
Distributed Systems and Rapid Prototyping. He
teaches a required course on software engineering in
the MS, MENG programs in Computer Science/
Computer Engineering.

JAMES E. LEWIS

James Lewis is a 1994 graduate of Hanover College.
He earned his Master of Science in Computer Science
in 1996 from the University of Louisville. He is
currently working on a doctorate in Computer Science
and Engineering at the University of Louisville. He is
employed by the Engineering Mathematics and
Computer Science department as a Graduate Teaching
Assistant, where he teaches programming courses in C
and Pascal and math courses such as Calculus I, and
Pre-Calculus. James Lewis is currently the Vice
President of the student chapter of the ACM and has
served as President of the chapter as well as a site
coordinator of the ACM Mid-Central Regional
Programming Contest. He is also participating in the

~ Ipilot PFF (Preparing Future Faculty) program at the
University of Louisville.

246

