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Abstract

One of the most important and instructive classes of
problems presented in a first course in strength of materials is
the determination of stress and deformation for beams with
concentrated loads and distributed loads with polynomial
linear densities. The theoretical development is an excellent
example of the type of reasoning found throughout the
subject, and practical design problems using the results arise
quite naturally. The traditional method of presentation of this
subject develops the differential equations relating load, shear,
and bending moment by analyzing a differential element from
the beam under a distributed load only, and then integrates
these equations between points at which concentrated loads
are applied. This requires as many integrals per equation as
there are concentrated loads and breaks in load distributions,
burdening the analyst with the determination of the integrand
for each of these integrals. The method presented here
represents the entire load by a single linear distribution
function. The concentrated loads appear as impulse functions,
the distributed loads as step or (ramp)” functions. The
integration of the shear and moment equations then requires
only one integral per equation. This is a considerably easier
manual computation than the traditional procedure. It also
provides a smooth path to computer solutions. Finally, the
singularity function approach provides a vivid exposition of
the relationships between mathematics, physics, computation,
and engineering design practice.

Formulation

We begin by stating the equations relating load, shear, and
moment for portions of beams subjected to distributed loads
(see Figure 1):
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where: w(x) is the linear density of the distributed load with
down as positive;
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V(x) is the internal vertical force exerted by the right
portion of the beam on the left portion of the beam,;
M(x) is the bending moment exerted by the right
portion of the beam on the left portion of the beam.
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Figure 1. Beam with distributed load.

Concentrated Force Representation

Our next step is to develop a method of representing
concentrated forces in terms of a linear distribution function
50 as to be able to express the entire problem in terms of a
single w(x). I develop the impulse function along the usual
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Figure 2. Impulise function development



heuristic lines, waving my hand at Figure 2., and pointing to
equation (3):

F&(x) = AliTo v (%) (3)

After cautioning the class that the lack of rigor in this
presentation would (rightly) give our math faculty apoplexy, I
take this opportunity to expose the relationship between pure
and applied mathematics, and to convey the importance of,
and my respect for, each. I then make the argument that the
area of the rectangular portion of y (x) is F, no matter what Ax
is, so that

IXFS(a)da =0, x<0
4
_[xFa(a)da =F,x20

The students have already seen that this is the V(x) function
resulting from a concentrated force F applied at x=0. Then it is
clear that w(x)=F5(x) is the load distribution function that
represents the force F applied at x=0, and it is an easy
demonstration that w(x)=F3(x-c) represents a force F applied
at x=c. Now we can include concentrated forces in w(x). Our
next step is to introduce compact expressions for successive
integrals of impulse functions.

Step and (Ramp)" Functions

The application of singularity functions to beams is
presented with great clarity by Eisenberg'. The definitions
used in the method being presented are expressed analytically
in equations (5), and are shown graphically in Figure 3.

0, x<0
Unit Step Function = u(x) =
1, x>0
(5)
0, x<0
. . n n
(Unit Ramp Function) = <X> =
x", x>0
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Figure 3. Unit Step and Unit Ramp Functions.
The rules of integration follow directly from (5):

jo" 8(a—a)da = u(x-a)

[} u(a-)d(e) = (x~a) ©)
X n 1
_[0 CEEY da=n+1<x-a>n+1

Manual Computation Example

The usefulness of singularity functions in beam
problems lies in these considerations:

1. Beam loads containing both concentrated forces and
distributed loads represented by piecewise-polynomial
linear density functions may be represented by a single
linear density function consisting of the sum of impulse,
step, and (ramp)" functions. See Figure 4. for two
examples.

2. The integration of equations (1) and (2) using (6) is very
easy for this type of w(x).

3. The expansion of the singularity functions in the solution
for the individual “piece” intervals also is very easy.

Figures 5. And 6. contrast the traditional and singularity

function solutions for the shear and moment functions of a

simply supported beam with one concentrated and one

distributed load. The advantage in simplicity of the singularity
function method apparent in this example becomes more
pronounced as the loading becomes more complex and/or the
computation of deflection is required. Another advantage of
the singularity method is that the expansion of the shear and



moment functions for values of x beyond the right end of the
beam, which must be identically zero, may be done before the
expansions for the other intervals. This provides a check
before any more work is done.
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Figure 4. Linear density examples.

Maple Computation Example

Figure 7. shows the Maple computation, including
Maple-generated shear and moment diagrams, of the
singularity function formulation presented in Figure 6. Maple
provides 8(x) and u(x) as the built-in functions Dirac(x) and
Heaviside(x) respectively. Lines two and three of Figure 7.
serve to yield Maple output (line four) for w(x) that looks
exactly like what would be written manually. This facilitates
checking. Lines five and seven also closely resemble the
manual computation. Lines six and eight (which are not
strictly necessary) do not closely resemble manual notation,
but once the analyst learns to recognize “Heaviside(x)” as
u(x), he can recognize these expressions as their manual
counterparts with the ramp functions expanded.

Design example

Figure 8. shows a design problem assigned as a take home
test. A substantial number of trial cases involving beam
loading calculations must be made in order to find the
minimum weight of steel that will satisfy all three AISC load
limitations. This very forcefully brings home to the students
the importance of having the tools to get “quick” answers
that we are confident are also “right.”
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Concluding Remarks

The approach to teaching beam computations described
above typifies in several important ways the approach to
engineering education that I personally advocate. First,
carefully develop the application of basic physical principles
to an engineering application. Second, couch the development
in the most compact, economical mathematical form
available, providing a heuristic development of the
mathematical tools employed as required. Third, provide
computational tools that translate the symbolic formulation of
the application into correct numerical results as directly and
naturally as possible. Finally, assign a design problem that
brings home the practical value of this analytical approach.
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Figure 5. Traditional Computation.

14




N

Figure 6. Singularity function computation.
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r > Digits=4;

Digits := 4
[ > delta:=x->Dirac(x);
5 := Dirac
r > ur=x->Heaviside(x);
u = Heaviside

r > wi=x->-8.2* delta(x)+10%dehta(x-72)+.1*u(x-84)-.1 *y(x-144)-7.8*deita(x-180);
w=x—>-8258x)+108(x-72)+.1 u(x-84)—.lu(x— 144) - 7.8 &(x - 180)
r> Vi=x->int(-w(x),X);

Vi=x— |-w(x)dx

L

r > value(V(x));

8.200 Heaviside(x) — 10. Heaviside(x — 72.) - .1000 Heaviside(x — 84.) x + 8.400 Heaviside(x - 84.)
+.1000 Heaviside(x — 144.) x - 14.40 Heaviside(x — 144.) + 7.800 Heaviside(x ~ 180.)

> ﬂ;’t(V(x),xnl..lsl,axesf ,ROMAN,8],labels={" x in inches®, V(x) ] title="V(x) in

L
* thickness=2 titlefont={TIMES,BOLD,12] );
V(x) in kips

Vix) 4t

073 70 ['] 1] .1 120 140 160
xn il

r> M:=x->int(V(x),x);
M=x—> J’V(x) dx

r > value(M(x));

8.200 Heaviside(x) x — 10. Heaviside(x — 72.) x + 720. Heaviside(x — 72.) — .05000 Heaviside(x - 84.) x2
— 352.8 Heaviside(x — 84.) + 8.400 Heaviside(x — 84.) x + .05000 Heaviside(x - 144.) x*
+ 1037. Heaviside(x — 144.) ~ 14.40 Heaviside(x — 144.) x + 7.800 Heaviside(x - 180.) x
— 1404. Heaviside(x — 180.)
L

> plot(M(x),x*.l..lBl.uesfmt-[TMS,ROMAN,B],labels-{‘x ininches °,M(x) ] title="M(x) in
[ kip-inches‘,micknuFZ,ﬁﬂefont-[ﬂMES.BOLD.12]);

M(x) in kip-inches
600

5001

M(x) 300+

2004+

0 30 [') 80 30 00 120 40 60

184

Figure 7. Maple computation.
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CODRE REQUIREMENTS
Three of the specifications that the American Institute of Steel Construction places on the use of

structural steel in beams are as follows.
a) The maximum tensile stress resulting from flexure must be less than 20,000 psi.

b) For beams without lateral bracing, compressive stress resulting from flexure must be less than
the smaller of 20,000 psi and

22500
B
1800 b2

psi

where L is the unsupported length of the member
b is the width of the compression flange.

c) For beams without lateral support,L must bae no greater than 40b.

Rules b) and c) are to prevent lateral buckling.

PERFORMANCE BPECIFICATIONS
1. The floor configuration shown on the attached drawing must bear a load of 650 1lb/ft?

2. For adequate subfloor support, joists spacing must be no more than 9.5 ft between centers.

DESIGN BPECIFICATIONS
Select the girder span (17 ft or 18 ft), the W-shaped girder and the W-shaped joist that require the

smallest total weight of steel.

DESIGN PRACTICE
i. Use the same members on the periphery and in the interior of the structure.

2. Treat each member as simply supported.

ASSIGNMENT
Generate the above DESIGN SPECIFICATIONS and present the calculations supporting them in an orderly

and professional fashion.

DA
17

Dimensiors in feet.
Dimensions typical.

Figure 8. Design problem.
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