Autonomous Robots and Genetic Algorithms:
Part IT - Robot Path Planning with a Genetic Algorithm

EYLER ROBERT COATES, JR !, WILLIAM A. RUSSELL, JR.!, KIMBERLY S. JOHNsSON?, KENNY COKER?, EUGENE SNIPES!

'University of Southern Mississippi, School of Engineering Technology, Hattiesburg MS
L ockheed Martin, GMPO Team, Stennis Space Center, MS
3Seagate Technologies, Moorpark, CA

Abstract

An autonomous vehicle was constructed containing a
Motorola 68HC11 microprocessor, a Vector V2X electronic
compass module, infrared collision avoidance sensors, and a
dc motor powered tracked platform. The robot completed in
the 1997 IEEE Southeastern Conference (SECON) hardware
contest hosted by Virginia Tech in Blacksburg, Virginia. The
objective of the competition was to retrieve as many metal
balls as possible in a timed, head-to-head competition with
another robot. The metal balls were randomly placed at polar
grid coordinate crossings on a twelve-foot by twelve-foot
plywood playing field. The polar grid coordinate system was
painted on the playing field. The random ball locations on the
polar grid were provided to each team fifteen minutes before
the start of each round.

The initial inclination was to follow the polar grid as
painted on the playing surface. However, this would probably
not be the shortest path to collect all the balls. Since points
are awarded to the team with the most balls collected in the
shortest time, a genetic algorithm and electronic compass
were used to optimize the distance traveled. There are twenty
balls on the table and using enumeration methods of finding
the shortest pathway, the solution would require all 19! (or
1.21645 x 10"7) possible paths to be evaluated. Computing the
total distance of any path to collect all 20 balls requires about
0.008 seconds of computational time. At this rate, it would
require about 30,858,726 years for one to be assured of the
optimal path. The genetic algorithm approach was chosen to
seek out a superior collection path. This approach while it
does not guarantee optimality, has been shown to quickly find
good solutions to difficult combinatorial problems. Using the
genetic algorithm approach, after only 5 minutes and
examination of only 37,500 paths, excellent results were
obtained for an efficient collection path.

Introduction to the Traveling Salesman Problem

There is a class of optimization problems that have
been traditionally difficult to solve. This includes
combinational problems such as the traveling salesman
problem (TSP). The traveling salesman problem can be
described as follows: The traveling salesman must visit every

222

city in his territory exactly once and then return to the
starting point. Given the distance (or cost) of travel between
all cities, how should he plan his itinerary for minimum total
distance (or cost) of the entire tour?

This simple sounding problem becomes very difficult
to solve as the number of locations increases. Consider a tour
of 4 cities, from any given starting point, we have 3 cities to
choose from. Having made that choice we now have 2 cities
left to choose from. Finally there is only one choice for the
last city. We have 3 x 2 x 1 possible paths. However, we
should note half of these paths are merely inversions of
another path. So some could say that we have only 3 unique
paths. Generalizing, the number of paths is (N-1)! or the
number of unique paths, not counting inversions, is (N-1)1/2.
Either case quickly becomes a formidable number as the
number of locations increase. For example, 5 locations yield
24 paths; 10 locations yield 362,800 paths; 15 locations yield
87,178,291,200 paths and 20 locations yield 1.21645 x 10"
possible paths! This hard-to-solve but simple-sounding
problem becomes rather important because many engineering
and scientific problems can be reduced to a TSP. Also, many
other NP-complete optimization problems are transformable
into each other which increases the interest in solving TSP
efficiently [5]. In fact, the literature on TSP is enormous. A
good start in the literature would include the comprehensive
survey by Lawler et al. [4].

Introduction to Genetic Algorithms

Genetic algorithms (GA) have as their model the
evolution process found in nature. Interest in GA began over
20 years ago with the work of Holland [3]. Since then the
area has achieved wide attention. Some fundamental reading
in the area would include Goldberg [2]. Today, there are
many books and conferences on the subject.

A very fundamental description of an evolutionary
process that improves the species might be: Suppose one
starts out with an initial population. Some of these population
members will be stronger and/or healthier than the other
members. The healthier ones will tend to survive to the
reproduction age compared to the weaker ones according to
the Darwinian theory. Also, because of the basic principle of
transference of hereditary factors from parents to offspring
discovered by Mendel, the children of strong parents will



have a tendency to also be strong. The children will not be
exact copies of their parents but will contain characteristics of
both of them to various degrees. And the children will have
some of their own unique characteristics. We should mention
that the strongest are not guaranteed to survive, nor their
children guaranteed to have inherited the best characteristics
of their parents, but the tendency is slightly in their favor.

The genetic algorithm attempts to emulate this
evolutionary process to solve engineering problems. The
process starts with a collection of feasible solutions to a
problem. Each solution is considered to be an “individual.”
The parameters of the solution are considered the “gene.” The
collection of these initial solutions is the initial “gene pool.”
The GA will then evaluate each member of the initial
population. The fitness of the “individual” is based on the
worth of the solution to the problem. The best solutions are
given a higher chance of survival. The GA then stochastically
eliminates a portion of the initial population with a bias
toward eliminating the poorer solutions. Finally, new
solutions are generated from the remaining members of the
population. There are numerous methods for generating the
new members. The basic methods include crossover and
mutation. Crossover means that we take portions of the genes
(solution parameters) from two parents and combine them to
form a new gene. This new gene defines an individual
(solution), which has characteristics of both parents. Mutation
in GA is done by altering a small portion of a gene in a
random fashion to give the member an entirely new
characteristic. After this new generation has been formed, the
entire process is repeated again beginning with the evaluation
of the fitness of the new members of the generation. The
process can be repeated as long as it is practical. A flowchart
of a typical GA is given in figure 1.

Based upon the flowchart, the GA can be a simple
and elegant method to solve a variety of problems. The
representation of the solution parameters as the gene and the
determination of fitness value by evaluating the solution tend
to be problem specific and represent the main challenge to
applying GAs to a particular problem.

Data and Equipment Used in Research

Visual Basic was used as the programming language
for the genetic algorithm since it is a good prototyping tool
and had good graphic capabilities that could show the
progress of the robot path as it evolved into a shorter path.
The computer used was a Pentium-based laptop so that the
path for the robot could be easily computed on site at the
competition.

223

Generate an initial population

v

Evaluate fitness of each member

v

Selection of parents

v

Generation of children through crossover,
mutation, etc.

No ﬁ
‘

Yes

Print Results

Figure 1 Flowchart of GA

Observations and Algorithm Methodology

As mentioned earlier, the representation of the
solution parameters as a gene is application dependent. In the
TSP, one way of representing a tour is to first assign integers
to each location. A tour could be represented by a complete
listing of the integers. For example, a 5-city tour that began
in location 1 could be represented by (1,2,5,4,3). Thus a
simple listing of the tour locations would become the
representation of the gene of an individual solution.

The usual GA calls for two parents to generate a
child. This two-parent (sexual) reproduction causes a
complication for the TSP. That is because it is possible that
the combinations of genes from the two parents would
represent non-feasible paths. For example, suppose that one
parent has the gene (1,2,5,4,3) and another parent has the
gene (5,1,4,2,3). Now suppose that we combine the genes
with a crossover operation so that the child has the first 3
“chromosomes” from the first parent and the last two
“chromosomes” from the second parent. The child’s gene
would be (1,2,5,2,3) which would represent an infeasible
solution since the location number 2 is visited twice and the
location number 4 is never visited. There are two methods of
getting around the problem of infeasible genes. One involves
either repairing or ignoring infeasible genes. The other



method is to avoid creating infeasible genes at the
reproductive stage.

One method that avoids the creation of infeasible
genes for TSP has been proposed by Chatterjee ef al. [1].
Their method uses an alternative type of GA that relies on
asexual or single-parent reproduction. The idea is that the
gene of a single parent can be cut and spliced any number of
times and places. When the slices are reassembled, the new
gene (child) will still contain each location only once. For
example, the single parent (1,2,5,4,3) can be cut randomly
into (1,2), (5,4) and (3). A random re-assembly could possibly
produce a gene that looks like (5,4,3,1,2) which is naturally
feasible. Thus, a crossover operation from a single parent can
be accomplished.

Chatterjee et al. [1] also proposed a method of
mutation that would preserve feasibility in the child gene. A
mutation-like operation can be achieved by simply reversing
one or more of the slices. For exampie, the slice (5,4) could
have been mutated into (4,5) before the re-assembly and the
result of our example could have looked like (4,5,3,1,2).

Finally, the evaluation of the fitness function for
each member of the population is simply a computation of the
actual Euclidean distance of the path represented by the gene.
During the selection of the survivors of a generation, the
members were randomly paired. The member with the
smallest distance was given a greater chance of survival and
the other member had the greater chance of elimination.

Originally, GA theory proposed that the initial
generation be randomly chosen. However, researchers have
found that the performance characteristics of GA’s can be
enhanced when the initial generation has been carefully
chosen. Chatterjee et al. [1] mentioned that when they
applied the nearest-neighbor (greedy) algorithm to find a
beginning solution to start the GA, the convergence time of
the GA to optimal solutions was reduced by half. The nearest-
neighbor algorithm involves creating a path to the nearest
location and continuing in that manner until there are no
locations left. This heuristic very often produces good if not
optimal solutions for small-scale traveling salesman problems
although there are patterns that will “trick” the heuristic into
longer paths. The nearest-neighbor algorithm does have the
advantages of providing a fairly good path in a short period of
time (about 1 second) which makes it an excellent tool for
providing a starting point for the GA. The starting location
and ending location of the path were fixed by the rules of the
competition. Normally, this would present a complication to
most TSP algorithms. However, this does not present a
problem to the GA because the internal workings of the GA
are problem independent with the exception of the evaluation
of the fitness function. In this case, the fitness function is the
Euclidean distance of the entire path. Thus, all that is
required to adapt the GA to this variation of the TSP is that
the distance calculated would be required to consider the
starting and ending locations.

224

Results

An algorithm was designed to exploit the
characteristics noted in the previous section. Starting out with
nearest neighbor heuristic to find a good initial solution, the
GA maintained a 75-member population for 500 generations.
An example of the initial path created by the nearest neighbor
algorithm is given in Figure 2.

Figure 2 Initial Path From “Greedy” Heuristic

The program kept track of the best path produced
over the 500-generation period. An example of the progress
of the best path over the evolutionary process is shown in
Figure 3. Thus, in all, for a particular problem, 37,500 (75
individuals x 500 generations) possible paths were evaluated.
This required about 5 minutes of computer time on a
Pentium-based laptop. The population size of 75 and the 500
generation run length were suggested by experimental results
from Chatterjee et al. [1] who generated a table based upon
different size problems.

The GA would often generate a path that would
range up to 30% shorter than the path given by the nearest-
neighbor heuristic. This is remarkable considering that the
nearest-neighbor heuristic produces very good solutions on its
own. An example of the final path that was produced from
the initial path in Figure 2 is given in Figure 4.

There are twenty balls on the table and using
enumeration methods of finding the shortest pathway, the
solution would require all 19! (or 1.21645 x 10'7) possible
paths to be evaluated. Computing the total distance of any
path to collect all 20 balls requires about 0.008 seconds of
computational time. At this rate, it would require about
30,858,726 years for one to be assured of the optimal path.



Figure 3 Progress of Best Path over Evolution

The genetic algorithm presented here only evaluated
37,500 paths which represents an incredibly small fraction of
the total possibilities (1/ 3.24387 x 10'%). And the GA did so
at an equally small fraction of the total time that would be
required to enumerate all the possibilities. Yet, the best
solutions it generated would appear by inspection to be very
good and no improvements were apparent.

Figure 4 Final Path Generated from GA

225

The rules of the IEEE-SECON robot competition
gave each team only 15 minutes to view the playing table to
see where the balls were located before the competition
began. The required computer time of 5 minutes was just
about the right time since there was some time needed before
the GA to enter the locations of the 20 balls into the program
and there was time needed afterward to download the shortest
path information to the robot.

Concluding Remarks

The genetic algorithm approach was chosen to seek
out a superior collection path for the robot. This approach
while it does not guarantee optimality, has been shown to
quickly find good solutions to difficult combinatorial
problems. Using the genetic algorithm approach, after only 5
minutes and examination of only 37,500 paths, excellent
results were obtained for an efficient collection path.

GAs have already been shown to be useful for
traveling salesman problems. The major contribution of this
research is that a GA algorithm that has been shown to be
practical for variations from the pure traveling salesman
problems. In this case, the path problem had fixed starting
and stopping locations, a non-complete round trip, and a pit
in the playing board that must be avoided. The method was
practical in the sense that a good solution was found in 5
minutes for a moderately sized problem.

References

1. Chatterjee, S., Carrera, C., and Lynch, L.A., 1996,
Genetic algorithms and traveling salesman
problems, European Journal of Operational
Research, 93, pp. 490-510.

2. Goldberg, D.E., 1990, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, Reading, MA.

3. Holland, .M., 1975, Adaptation in Natural and
Artificial Systems, The University of Michigan Press,
Ann Arbor.

4, Lawler, E.L., Lenstra, J K., Rinnooy, K., and

Shimoys, D.B., 1985, The Traveling Salesman
Problem, John Wiley and Sons, New York.

5. Pal, K.F., 1993, Genetic algorithms for the traveling
salesman problem based on a heuristic crossover
operation, Biological Cybernetics, 69, pp. 539-546.



WILLIAM A. RUSSELL

William Russell graduated from Southern Arkansas University in
1987 with a BS in Engineering Physics. In 1989, he earned his MS
degree in Electronics and Instrumentation from the University of
Arkansas at Little Rock and completed his doctorate in 1994. While
working his way through school Dr. Russell has tested Sparrow
Missiles for General Dynamics, and was the Engineering Manager
for Scanning Technologies, Inc., which is a bar code industrial
automation company. Before returning for his doctorate, William*
worked as an automation engineer for a startup company called ESI
Automation. After his doctorate was completed, he continued his
ultrasonic diagnostic equipment research in obstetrics for the
University of Arkansas for Medical Sciences. Dr. Russell is now an
assistant professor for the University of Southern Mississippi. He is
continuing his obstetrical research which includes: precision low
noise circuits, RF instrumentation, embedded microprocessors,.
digital signal processing, printed circuit board design and
fabrication, and automation.

EYLER ROBERT COATES

Eyler Robert Coates graduated from Louisiana State
University in 1979 with a Bachelor of Science degree in
Industrial Engineering. He has worked at Cincinnati
Milacron, Hatteras Yachts and Davis Yachts as an
industrial engineer. He obtained a Master of Engineering
Science degree from Louisiana State University in 1996.
He has completed his doctoral coursework at LSU and
plans to complete his dissertation in 1998. Eyler Coates
is currently an assistant professor at the University of
Southern Mississippi in Hattiesburg.

226



