A First Course in Computing for Engineers

Kenneth J. Christensen, Dewey Rundus
University of South Florida

Abstract

Without a doubt, the use of computers reaches into all
engineering disciplines. Thus, the importance of the first
course in computing in the engineering core curriculum
should not be underestimated. At the University of South
Florida, Computer Tools for Engineers is a required course
for all engineering students. This course teaches the use of
computers for solving engineering problems. The course is
innovative in its teaching of not only a high-level
programming language, but also a mathematics package,
spreadsheet, and formal design methods. A particular
emphasis is placed on problem solving through formal
methods such as divide-and-conquer and successive
refinement. These are methods that form a core “engineering
thinking” that is of value for problem solving even outside
the realm of computer programming. Two significant
challenges in teaching Computer Tools for Engineers are the
lack of academic discipline of underclass students and the
need to accommodate their very wide span of backgrounds.

Introduction

A key component of a traditional engineering
curriculum is a first course in computing. With the use of
computers pervasive in all engineering disciplines, the
successful mastery of computing is important for all
engineering students. Today most engineering students have
their own Personal Computer (PC) at home and certainly
have ready access to PC’s in the college. The effective use
of the computer as an engineering tool can do much to
improve a student’s academic performance while in school
and workplace performance after graduation. Computers are
today used for a far greater number of tasks than they were
10 or 20 years ago. Computers are used for
communications, literature research, text processing,
presentation graphics, mathematical analysis, data analysis,
numerical problem solving, and for specialized applications.
The first course in computing must reflect this expanded
range of applications by augmenting the teaching of a
programming language with a presentation of the computer
in its role as an engineering tool.

The first computing course for engineers has
traditionally been a “FORTRAN course” intended to teach
basic programming concepts and the syntax and usage of a

247

particular high-level language. The choice of “which
language to teach” remains an unresolved issue with
arguments made for FORTRAN, C, C++, Java, spreadsheet
macro languages, and symbolic mathematical languages (see
[1], [4], and [12]). Some large engineering colleges allow
the student to select the language to be learned by enrolling
in a specific section, each section based on a different high-
level language (see [7]). We believe that the language
debate obscures the real value of a first course in computing.
A first course in computing should teach not only
programming in a high-level language, but also the use of
common computer tools and formal design methods. Many
of the key concepts of program design, that are also language
independent, are very important as methods of engineering
problem solving, or “engineering thinking”. For example,
methods of divide-and-conquer, successive refinement, and
algorithm flowcharting have value for all engineering
disciplines.

In this paper we present the design and organization of
Computer Tools for Engineers as developed and taught in
the College of Engineering at the University of South
Florida. The second section describes the course design.
The third section describes the course pedagogy including
the use of lecture and laboratory components. The fourth
section contains observations made in teaching this course
over a span of several years. The final section is a summary
and also describes future directions for the course.

Course Design

The course Computer Tools for Engineers at the
University of South Florida is a required three credit hour
core engineering course and is typically taken in the
Freshman or Sophomore years. Since the only course
prerequisite is Calculus I, this is the first engineering course
taken by many students. The course is organized into six
major topics. The topics are:

1. Motivation - course motivation, introduction, and
basic PC use
Formula crunching - use of a mathematics package
Number crunching - use of a spreadsheet
What’s under the hood - computer internals
Think it through - methods of design
Just program it - programming with a high-level
language

e v

Appendix A contains an example course syllabus and
Appendix B contains an example outline of the entire course
showing the material covered and the amount of time spent
on each topic.

Motivation and introduction

Students begin the course, Computer Tools for
Engineers, with many different attitudes, personalities, and
histories of computer experience. For some, computers are
to be feared, for others computers are thought to be non-
relevant to their chosen engineering discipline, and for yet
others computing is already a common part of their lives.
Each of these student personalities poses special challenges
to teaching Computer Tools for Engineers.

The first lecture is intended to demonstrate the relevance
of computers as a tool for all engineers. We point out that
tools are specific for a task and that using the wrong tool
may “work” (e.g., using a hammer to put in a screw), but is
certainly not efficient. The first laboratory session is
intended to level all students with basic PC use including:
¢ Finding and launching applications in Windows and
DOS

¢ Copying, moving, and renaming files and
directories and using a simple text editor (e.g., Edit
in DOS or Notepad in Windows)

e Using an email program (e.g., Eudora or Pine)

e Using a browser (e.g., Netscape) to access

resources on the World Wide Web (WWW)

Formula crunching - use of a mathematics package

A common tool used by all engineering students is a
calculator. It is not assumed that the students can program a
calculator (can many faculty really program a calculator?).
In many ways, a calculator is the “hammer” that students try
to apply to all problems. A calculator works well for non-
repetitive numerical calculations, but does not work well for:

e Calculations that need to be repeated many times

with different inputs

e Calculations that need to be documented for

presentation to others

e Producing graphical output

e Solving for unknowns

e Performing symbolic math
These tasks are summarized as “formula crunching”. We
cover a mathematics package as a logical extension of a
calculator. There are a number of mathematics packages
available including Mathematica [10], Maple [11], Matlab
[6], and Mathcad [5]. We have chosen to use Mathcad for
three reasons:

1. Itis easy to learn and includes components typical

of all of the other packages.

248

2. It is affordable, students can buy a copy of Mathcad
for use on a home PC and licensing multiple copies
for on-campus use is also feasible.

3. It has a very good built-in tutorial.

First we teach the use of Mathcad for solving numerical
problems with variables and functions. This introduces
students to the important concepts of variables and functions
which are encountered in many aspects of computing. The
next step is to teach graphing of functions. A break-even
analysis example is done in lecture to show how graphing
can be used to visually find answers to problems. After
graphing we teach the symbolic math capabilities of Mathcad
including solving for variables symbolically, solving for N
unknowns in N equations, and simple symbolic
differentiation and integration. Not all functions in Mathcad
are covered. For example, the ability to read data from a file
is omitted. For purposes of number crunching existing data,
a spreadsheet is a better tool. Also omitted is the
programming capabilities of Mathcad. For programming, a
high-level language is a better tool.

No textbook is used for this course topic. Instead, in
lecture the Mathcad tutorial, quick sheets, and help facilities
are introduced. Students are assigned to work through the
entire tutorial which is estimated to require about 2 to 3
hours. The use of an online tutorial and help facilities is an
achievement in itself, it teaches students that they can “learn
from the computer”. Two laboratory sessions are devoted to
Mathcad, one covering simple calculation and the other
covering more advanced graphing and symbolic capabilities.

Number crunching - use of a spreadsheet

A mathematics package is the right tool for formula
crunching. However, for the analysis of large data sets, or
“number crunching”, a spreadsheet is a better tool.
Spreadsheets are very good tools for:

o Analysis of large sets of numbers

e Graphical presentation of data analysis

o Development of easy to use “intelligent forms” for

application-specific computing
Many spreadsheet packages are available with all having
roughly similar capabilities. For this course we use
Microsoft Excel due to its ready availability and extensive
capabilities. The first lecture teaches the entry of text,
numerical values, and formulas into a spreadsheet.
Arithmetic operator precedence is covered. Importing data
from text files is taught. Addressing modes (relative and
absolute) are covered and the use of built-in functions
(including the IF() function) is taught. An entire lecture is
spent on the graphing of data. With the built-in graphing
wizard in Excel, generating high quality graphs is easy.
Along with graphing, simple cut-and-paste between
applications is taught. At this point the Microsoft Word

Equation Editor is briefly introduced to teach students that
mathematical formulas can easily be typeset into their word
processing documents. Once students have learned how to
manipulate and present data, the use of a spreadsheet to build
an “intelligent form” is taught. In an intelligent form a user
inputs numerical values in labeled fields and the spreadsheet
then computes results as a function of these inputs and their
respective cell formulas. An intelligent form allows an
engineer to develop a “computer application” for use by
someone else who does not need to be familiar with the
method of solution for the given problem.

“What’s under the hood” - computer internals

A single lecture is devoted to describing how a
computer works, or “what’s under the hood”. The Von
Neumann computer architecture model (see Figure 1) is
introduced and examples are given for all of the components
of the model. The operation of memory and disk storage is
described. Having understood spreadsheets, students can
make an analogy between memory addressing and
spreadsheet addresses. The concept of machine language,
and assembly language as a human form of machine
language, is introduced. Students see how machine language
is capable of only very simple operations such as moving
data words to and from memory and simple arithmetic
operations. The operation of an assembler follows from the
discussion on machine and assembly language.

Input
devices I CPU
‘ :
E Control P Arithmetic E
: unit logic unit E
;] ;
Output L
devices -
Memory
4
External
storage

Figure 1 - The Von Neumann architecture model (from [8])

The next step from assembly language is a high-level
language. The development of high-level languages as
application specific languages to problem solving is
introduced. Here again the idea of choosing the right tool
for the problem is made. it is shown that FORTRAN is
intended for scientific applications, COBOL for business
applications, BASIC and Pascal for education, C for systems
programming, and Java originally for consumer appliance

249

control applications. The operation of a compiler is
described and hands-on laboratory exercises are conducted
to familiarize students with the use of a compiler. However,
before moving to programming in a high-level language,
proper design methods must be covered.

Think it through - methods of design

Possibly the most valuable part of Computer Tools for
Engineers is teaching the students proper design methods.
Engineers are often faced with problems that are:

1. Large, but intellectually simple

2. Small, but intellectually complex
For the first class of problems a means of decomposing the
problem into manageable units, or modules, is necessary.
The method of divide-and-conquer is taught. The end result
of a divide-and-conquer approach to a problem is a structure
chart showing at its “leaves” easily manageable tasks. In the
context of programming, the leaves of structure diagram
become individual program modules or subroutines. Figure
2 shows an example structure diagram for the example of
“build a dog house”.

Build a dog house
|

| |
Buy materials Assemble materials

]
{ | 1
Buy roofing Buy lumber Buy paint

|
Buy plans

|
Cut lumber Build Paint

| |
Build floor Build walls Build roof

Figure 2 - Example structure diagram

For the second class of problem, very typical of
homework and exam problems in the view of the students, a
method of successive refinement is taught. In successive
refinement a difficult task is first written as a one sentence or
single block flowchart solution and then, in successive
increments, details are added until finally a complete
algorithm is derived. An example used in class is,
“Determine if N is prime”. Figure 3 shows the successive
refinement approach to this problem. Step #4 would be to
code the problem in a high-level language. Successive
refinement is a very powerful technique for taking an
abstract programming problem to a coded solution. We
teach flow charting at the same time as successive refinement
s0 that the final design refinement is a flowchart ready to be
converted into program code, or just program it (with
apologies to Nike).

Step #1:
Determine if N is prime
Step #2:

Input N
Divide N by all numbers from 2 to (N - 1}

If N divides evenly then output *N is not prime*

If N does not divide evenly then output *N is prime®

Step #3:

J is an integer counter variable
Input N
Loop J = 2 to (N - 1)
Test if N divides evenly by J
If yes output "N is not prime® and halt
EndLoop
Output *N is prime*
Halt

Figure 3 - Example of the successive refinement method
Just program it - use of a high-level language

If proper design methods have been taught and the
concepts of variables and functions (from MathCad and
Excel), program compilation, and program execution are
understood, then teaching a high-level programming
language is less tedious. We introduce a computer high-
level language as a “‘vocabulary” with the analogy that
knowing only a vocabulary does not enable one to be a great
writer. It is true that the computer language chosen does
influence the design, but procedural languages such as
FORTRAN, Pascal, and C are really all very similar at a
design level. That is, translating a design (for example as in
Figure 3) into FORTRAN, Pascal, or C is not very different.
This argument does not apply to object-oriented
programming (e.g., Smalltalk or C++), which requires a very
different thinking process than programming in the more
typical procedural languages.

Programming, and FORTRAN as the high-level
language in which to implement a program, is taught in five
learning modules covering approximately eight weeks. The
argument that programs should be readable by both
computers and humans is strongly made. Thus, the habit of
careful documentation is developed from the beginning. A
standard header and documentation style is introduced, see
Figure 4, and students are required to use this header format
for all programs and subprograms. The five learning
modules are:

1. Programs with straight-line execution -- Data
types, arithmetic, and program input/output are
covered. Special care is given to discussing mixed-
mode arithmetic problems. Program
documentation, organization (header, specification,
and execution), and naming of variables 1s covered.

2. Programs with selection -- Logical expressions
and the various IF constructs are taught as the
means of selecting portions of code to execute

250

based on logical conditions. Having been
introduced to IF and logical expressions in
spreadsheets, the application of the various flavors
of the FORTRAN IF is not very difficult for
students.

3. Programs with repetition -- The next step from
selection is repetition. DO loops, WHILE-DO, and
DO-UNTIL are taught. Debugging with trace
statements is taught.

4. Programs with subprograms -- Subprograms such
as FUNCTION and SUBROUTINE are seen as
ways to break-up large monolithic programs into
modular programs conforming to a structure
diagram. A FUNCTION is seen to be very similar
to a Mathcad function.

5. Complex data structures -- As a final topic, one
and two dimensional arrays are covered. Having
seen spreadsheets, the concept of an array is not
difficult. Manipulating two-dimensional arrays, for
example in a matrix multiplication subroutine,
reinforces the learning of loop constructs.

We intentionally do not cover all of the FORTRAN
language. Archaic constructs, such as computed GOTO’s,
are omitted. Also minimized, are FORTRAN-specific
features that do no extend well into other languages. For
example, FORTRAN’s FORMAT statement, DATA
statement, and COMMON statement are presented so that
the student can recognize their use when encountered in
existing code, but these features are only minimally
practiced.

<
¢= Program name (assignment #)
¢= Your name and SSN

filename =

c
c= Description of program purpose and function
<

c= Variables used are:

o=

non

c
c= Program inputs are:
c= Program outputs are:

(]

Figure 4 - Standard program and subprogram header

Course Pedagogy

Computer Tools for Engineers is offered Fall, Spring,
and Summer semesters and has an enroliment of up to 240
students per semester. A two-hour lecture meets once per
week in a large auditorium. Each student attends one smaller
laboratory session with each laboratory session meeting in a
“PC lab” with one PC for each student. The lecture is given
by a full-time faculty member and the laboratory sections are
handled by graduate teaching assistants. Important
considerations for the class text include clarity of expression,
extensive use of engineering-oriented examples, and
inclusion of study problems of varying degrees of difficulty.

Lecture pedagogy

The lecture room in which the course is taught contains
the standard blackboard, but also contains a computer
projection screen. The computer projection screen is
particularly useful for this course. It not only supports the
display of presentation-graphics slides, but also allows
display of real-time creation, execution, and debugging of
programs. This promotes a feeling of involvement for the
students. The digitally based format of the lecture materials
allows them to be made available to the students on the
course WWW homepage. The course WWW homepage is
shown in Figure 5 (and also described in detail in [3]).
When covering FORTRAN programming, some example
programs are created and executed in class while other small
sample programs are presented and then the students are
asked to work-through the operation of the program. In this
way the concepts of, for example, a loop and its
implementation in FORTRAN can be learned. Students have
the option of downloading and printing the WWW
“handouts” before class for study and note-taking in class.
Thus, the lecture is driven not only by required textbook
readings, but also by materials presented on the class
homepage as handouts. Other materials used to support
lecture activities include the old quizzes and exams that are
available from the class homepage. Within the lecture
sessions, readings and laboratory assignments are made.
These assignments are completed and submitted within
individual laboratory sessions.

Computer Tools for Engineers

EGN 2210 - Fall 1997

Welkcome to the bome page for Compaser Tools for Exginosrs being taught Fall 1997 in the of Engs -
the University of South Flonda Al updates are described on the updates page and general notices are posted on the
potices page. Students should frequemtly check both of these pages

* Sylabus * Handouts * Frequently Asked Questions
® Quiie ° Auiagens mdsohnens * Heloflluay

* Updates * Ezam solmons ® Oniine resources

* Notices * Old quiges and exams ® Other resources

* Draft ASEE paper * Class grades

L peopie have accessed this page since September 29, 1997

Last updated by Ken Christensen on OCTOBER 23, 1997

Figure 5 - Homepage for Computer Tools for Engineers

251

Laboratory pedagogy

The hands-on learning occurs in the laboratory sessions.
Laboratory sessions meet every week. The weeks alternate
with hands-on assignments and quizzes. ‘Each laboratory
session serves approximately 20 to 40 students and is
conducted by two graduate teaching assistants. Within the
laboratory session a short lecture is given on the particulars
of the biweekly assignment and then the students are allowed
to work the assignment on their own initiative. All
laboratory assignments must be completed and checked-off
during the laboratory session to earn credit. Quizzes are
given on alternate weeks and are also completed on the PC’s.
For example, the Mathcad quiz requires solving several
problems in Mathcad and then submitting a diskette
containing the Mathcad sheets for grading.

Observations and Challenges

Computer Tools for Engineers is not an easy course for
the students or the instructor. For many students this is their
first engineering course and they do not understand the time
commitment and discipline needed for such a course. On the
first day of class, students are asked to sign two identical
forms as shown in Figure 6. One copy is to be kept by the
student, the other to be returned to the instructor. Time is
spent in class to discuss studying strategies for exams and
quizzes. This time is well spent and also helps improve
student attitudes.

I understand that to be successful
in Computer Tools for Engineers I must:

1) Attend and participate in all classes and labs.

2) Dedicate at least 6 hours per week outside of the classroom
for reading, -studying, and working exercises and assignments.

3

Write down a question and have it answered by a) myself,
b) the instructor, c¢) a teaching assistant, or d) another
student whenever I encounter something that I do not
understand.

4

Have a positive mental attitude. This can be a difficult
course, but with a positive attitude the material can be
learned and applied.

Figure 6 - First day commitment form signed by the students

The problem of commitment is exacerbated by the
feeling of many students that since their chosen engineering
specialty is not computers and programming, this course is
merely something to suffer through. The first day
motivational lecture is intended to demonstrate that
computers are relevant to everyone. It is made clear that the
computer is as much a part of the professional engineer’s
desktop as is a telephone. Competent use of both of these
tools is essential for professional success! The algorithmic

approach to problem solving with its emphasis on
unambiguous detail does not come easily to many students.
This is why we believe that additional time must be spent on
problem solving techniques before any actual programming
is undertaken.

Most of the students taking this course will not go on to
write computer programs. They are more likely to need to
be able to understand the logic of an existing program so that
they can effectively use or modify that program. This course
should therefore focus on providing a reading level of
programming literacy without expecting much in the way of
programming production. Any programming assignments or
exam questions which seem “interesting” to the instructor
should therefore probably be avoided.

There is no easy way to overcome the wide range of
student backgrounds. The extremes of the computer
experience dimension, the total computer novices (a
surprisingly sizable group even within engineering majors)
and the computer hobbyists, pose different problems. The
former can usually be helped by the patient provision of
individual assistance during laboratory sections, office hours,
and help sessions. Attempts to deal with the lack of
challenge and consequent, often disruptive, boredom seen in
the latter group have been much less satisfying. We would
welcome any really practical ideas for enhancing the class
experience for those students.

Summary and Future Directions

In summary, Computer Tools for Engineers at the
University of South Florida teaches incoming engineering
students how to use computers to solve problems. Not only
is a high-level programming language taught, but so are the
use of a mathematics package for “formula crunching” and a
spreadsheet for “number crunching”. The basics of
computer operation are reviewed. Design methods,
including divide-and-conquer and successive refinement, are
stressed as ways of “engineering thinking” that can be
applied to solving problems in many engineering domains.
Future directions for the course include finding ways to
address the wide range of backgrounds of incoming students.
An Instructional Development Grant proposal to be
submitted to the University of South Florida is currently
under preparation (see [2]). This proposal intends to
develop self-paced tutorial and active-learning modules for
improved presentation of the course. It is hoped that the
developed learning tools can be widely distributed to other
engineering colleges.

References

[11 G. Bjedov and P. Andersen, “Should Freshman

252

Engineering Students be Taught a Programming

Language,” Proceedings of the 26th Annual Frontiers

in Education Conference, pp. 90 - 92, November 1996.
[2]1 K. Christensen and D. Rundus, “A Technology-
Supported ‘Boot Camp’ for Computer Tools for
Engineers (EGN 2210),” Proposal for USF
Instructional Development Grants Program, January
30, 1998.
{31 K. Christensen and A. Barrett, “Using the Internet to
Enhance Off-Campus Engineering Education,”
Proceedings of the 1997 ASEE Southeastern Section
Meeting, pp. 35 - 42, April 1997.
[4] F.Hosch, “Java as a First Language: An Evaluation,”
SIGCSE Bulletin, Vol. 28, No. 3, pp. 45 - 50,
September 1996.

Mathsoft, Mathcad 7.0, 1997. URL:
http:/f'www.mathsoft.com/.

(5]

MATLAB 5.1, The MathWorks, Inc., 1997. URL:
http:/fwww.mathworks.com/.

(6]

[7]1 North Carolina State University College of
Engineering, Civil Engineering Semester-by-Semester
Curriculum Display, 1997. URL:
http:/fwww.engr.ncsu.edu/academic/curricula/ce.html.
(8] L. Nyhoff and S. Leestma, FORTRAN77 for Engineers
and Scientists, fourth edition, Prentice Hall, Upper
Saddle River, NJ, 1996.

[9] K. Pierce, L. Deneen, and G. Shute, “Teaching
Software Design in the Freshman Year,” Proceedings
of Software Engineering Education, pp. 219 - 231,
October 1991.

[10] Wolfram Research, Mathematica 3.0, 1997. URL.:
http://store.wolfram.com/catalog/mathematica/ .

[11] Waterloo Maple, Maple V, Release 4, 1997. URL:
http:/fwww.maplesoft.com/.

[12] J. Zachery, et al., “An Entry-Level Course in
Computational Engineering and Science,” SIGCSE
Bulletin, Vol. 27, No. 1, pp. 209 - 213, March 1995.

Appendix A - Course Syllabus for Computer Tools for Engineers

This course introduces all engineering majors to the use of the computer as a problem solving tool. Three
representative tools are introduced. The tools are: a high-level mathematics package (Mathcad), a spreadsheet
(Excel), and a high-level engineering programming language (FORTRAN). The material learned in this class will be
of value to all engineering majors for the remainder of their undergraduate engineering curriculum and in their
professional careers.

Instructor: Ken Christensen (Assistant Professor)
Office: ENB 319
Office Phone: 974-4761
Office FAX: 974-5456
Home Phone: 991-4401 (not after 10pm, please)
Email: christen@csee.usf.edu
WWW: http://www.csee.usf.edu/~christen

Office hours: To be announced.
Teaching assistants: To be announced.

Textbook: The textbook for this course is FORTRAN77 for Engineers and Scientists, fourth edition by Larry
Nyhoff and Sanford Leestma.

Prerequisites: The only prerequisites are 1) the desire to learn, and 2) the discipline to work very hard. This is not
a course for slackers.

Grades: Your grade will be computed as 6 quizzes at 5% each for 30%, 5 assignments (drop lowest of 6) at 4%
each for 20%, midterm exam for 20%, and final exam for 30%. Final grade will be: A = 90% and above, B = 80% to
89%, C = 70% to 79%, D = 60% to 69%, F = less than 60%.

Late and missed work policy: Missed lab session cannot be made-up unless discussed prior. with the instructor
prior to the missed lab session. No missed quizzes or exams will be excused. Exceptional circumstances should be
discussed with the instructor.

Attendance policy: The decision to attend a given class or lab is up to you. However, 100% attendance is expected
if you are to pass this course. Look at it this way... when you take your first professional job, how many times in
three months do you expect to be late and/or absent and still keep your job?

Academic honesty: If you are dishonest, you will be asked to leave the course and take an “F”’. On quizzes and
exams, you do not give or receive help. For the laboratory exercises, you must submit independent work.

Note from the Provost: “Students who anticipate the necessity of being absent from class due to the observation of

a major religious observance must provide notice of the date(s) to the instructor, in writing, by the second class
meeting.”

253

Appendix B - Course Outline for Computer Tools for Engineers

Week #1: Motivation and introduction
e Lecture - The computer as a tool for solving engineering problems. Motivation problem to compare
business and engineering salaries solved with Mathcad.
e Lab - “PC 101” including Windows and DOS basics, using DOS Edit, Netscape, and Email.
Week #2: Mathcad (reading - Mathcad tutorial)
e Lecture - Basic calculation and graphing with- Mathcad including a break-even analysis example
o Lab - Lab assignment #1
Week #3: Mathcad and Excel (reading - Mathcad tutorial)
e Lecture - Built-in functions, vectors, matrices, equation solving, least squares fit, and symbolic math
capabilities in Mathcad. Formula entry, addressing modes, and functions including IF function in Excel.
e Lab - Quiz #1
Week #4: Excel (reading - supplementary material)
e Lecture - Introduction to equation editor. Spreadsheet advanced functions including trendlines, solver, and
data analysis tools.
s Lab - Lab assignment #2
Week #5: Computer internals (reading - chapter 1)
e Lecture - Von Neumann architecture, machine, assembly, and high-level languages. Introduction to the
FORTRAN compiler.
e Lab-Quiz#2
Week #6: Design methods (reading - chapter 1)
o Lecture - Flow charting, divide and conquer, and successive refinement as design methods.
o Lab - Lab assignment #3
Week #7: FORTRAN (reading - chapter 2)
e Lecture - Basic structure of a program and documentation rules. Data types, variables and constants, and
arithmetic.
o Lab-Quiz#3
Week #8: Midterm exam (covers all topics from week #1 to #7)
e Lecture - No lecture this week
e Lab - Lab assignment #4
Week #9: FORTRAN (reading - chapter 2 and 5.1)
e Lecture - Console and file input/output, FORMAT, and simple debugging.
s Lab-Quiz#4
Week #10: FORTRAN (reading - chapter 3)
e Lecture - Logic expressions and program selection using IF
o Lab - Lab assignment #5
Week #11: FORTRAN (reading - chapter 4)
e Lecture - Repetition using single and nested loops (DO, WHILE-DO, DO-UNTIL)
e Lab-Quiz#5
Week #12: FORTRAN (reading - chapter 6 and 7)
e Lecture - Subprograms using FUNCTIONS and SUBROUTINES
e Lab - Lab assignment #6
Week #13: FORTRAN (reading - chapter 8 and 9)
e Lecture - One and two dimensional arrays. Application examples of sorting and matrix muitiplication.
o Lab - Quiz #6
Week #14: Course review (reading - none required)
e Lecture - Overview of FORTRAN features not covered, course summary, and preparation for final exam
e Lab - No lab this week
Finals Week: Final exam (comprehensive)

254

DEWEY RUNDUS

Dewey Rundus received his Ph.D. in Experimental Psychology
from Stanford University in 1971 and his M.S. in Computer
Engineering from the University of South Florida in 1985. He
is currently an Associate Professor and Associate Chair in the
Department of Computer Science and Engineering at the
University of South Florida. His research interests focus on
Human / Computer Interaction and System Usability. His
concern for undergraduate education has earned him a
University of South Florida Outstanding Teaching Award and
a State of Florida Teaching Incentive Program Award. His
homepage is at, http://www.csee.usf.edu/~rundus.

KENNETH J. CHRISTENSEN

Kenneth J. Christensen received his Ph.D. in Electrical and
Computer Engineering from North Carolina State University in
1991. He is currently an Assistant Professor at the University
of South Florida. His research and teaching interests are in the
areas of computer network systems, architectures, and
performance modeling with an emphasis on integrating voice,
video, and data in existing and future networks. He has over
fifteen conference and journal publications, eight U.S. patents,
and several patents pending all in the areas of computer
networks and performance modeling. He was awarded a USF
1996/1997 Outstanding Undergraduate Teaching Award. He
is a member of ASEE and ACM and a senior member of IEEE.
His homepage is at, http://www.csee.usf.edu/~christen.

255

